Brown Bag Seminars on Data Science


Active contributions are required and welcome from everybody - please contact us (sick@zhaw.ch) if you have ideas for a topic or want to join the seminar mailing list.

Talks

When/Where Who Title Material
29. April 2021 Beate Sick Bayes for dummies - Transformation Models for Flexible Posteriors in Variational Bayes slides
29. April 2021 Lilach Goren CNNs for Fault Detection: a Wind Turbine Use Case slides
19. Nov 2020 Oliver Dürr Ordinal Transformation Models (ONTRAM) slides
18. June 2020 Lucas Kook Diluted causality via anchor regeression slides
8. May 2020 Beate Sick Deep transformation models slides
10. Oct 2019 Lucas Kook, UZH Transformation models - an introduction slides
3. Oct 2019 Oliver Dürr, HTWG Go with the Flow slides | github
21. May 2019, TB610 Beate Sick Uncertainties in Neural Networks slides
23. January 2019 Bernd Freisleben, Uni Marburg Deep Learning for Computer Visision slides
15. November 2018 Thilo Stadelmann AlphaZero: Learning Games from Selfplay slides
video
19. July 2018 Beate Sick Historic anecdotes about (non-) causal thinking in statistics and artificial intelligence slides
19. June 2018 Vasily Tolkachev Deep Image Representations with Explainable Features slides
29. May 2018 Gilles Kratzer, UZH Bayesian Networks Learning in Nutshell slides
29. November 2017 Gabriel Eyyi Introduction to Reinforcement Learning:: Introduction / OpenAI Gym slides code
29. November 2017 Melanie Geiger Introduction to Reinforcement Learning:: Deep-Q Learning slides nb env
29. November 2017 Oliver Dürr Introduction to Reinforcement Learning:: Policy Gradient slides
23. November 2017 Domenic Bertschi Extreme Gradient Boosting slides code
2. November 2017 Beate Sick Some statistical considerations for predictive modelling slides
19. October 2017 Olivier Verscheure (EPFL) From Open Data Science to Collective Intelligence slides (will come soon)
2. August 2017 Lukas Tuggener Impressions of the ICVSS CV Summer School no slides
5. July 2017 Ismail Elezi On Relaxation Labeling slides
7. June 2017 Lukas Tuggener An overview of modern methods for segmantic image segmentation slides
18. January 2017 Ana Sima, Jan Stampfli, Kurt Stockinger Real-Time Alarm Verification with Spark Streaming and Machine Learning slides
10. January 2017 Oliver Dürr Introduction to Recurrent Neural Networks (RNN) slides github
10. January 2017 Beate Sick Dropout and Bayesian Statistics slides
21. December 2016 Thilo Stadelmann Datalab Christmas Lecture: Generative Adverserial Networks (GAN) slides
23. November 2016 Oliver Dürr Deep Learning with TensorFlow (Again in TB 534) slides github
16. November 2016 Oliver Dürr Introduction to TensorFlow slides R python
22. September 2016 Beate Sick individual conditional expectation plots slides
6. July 2016 Thoralf Mildenberger Compositional Data slides code
15. June 2016 Manuel Renold Climate Modelling on High Performance Computer (HPC) slides
11. May 2016 Oliver Dürr Variational Autoencoders slides github
20. April 2016 Yang Hu Extreme Learning Machines and Its applications in Fault Detection slides
11. April 2016 Marcello Pelillo Grouping Games slides
17. Feburary 2016 Philipp Ackermann D3.js (Data-Driven Documents) slides github
27. January 2016 Beate Sick Auto encoders, PCA and semantic hashing slides
21. October 2015 Stefan Glüge Learning Long-term Dependencies in Segmented-Memory Recurrent Neural Networks slides github
7. October 2016 Kurt Stockinger Spark slides
15. August 2015 Christoph Heitz Data Products slides
1. July 2015 Thilo Stadelmann, Thierry Musy Graf Transformer Network slides
11. June 2015 Beate Sick Causal inference with graphical models slides
20. May 2015 Christoph (Axa) Telematik not available
22. April 2015 Oliver Dürr Convolutional Neural Nets II: Hands on slides github
1. April 2015 Thierry Musy IPython for Data Scientistc slides github
3. March 2015 Yan Ke, Derek Hoiem, Rahul Sukthankar Computer Vision for Music Identification slides
21. January 2015 Fatih Uzdilli Deep Learning of Text Representations slides
17. December 2014 Oliver Dürr Convolutional Neural Networks slides
3. December 2014 Melanie Imhof Big Data Query Processing with Mixed Workloads slides
29. October 2014 Bernd Wiswedel Introduction to KNIME slides
15. October 2014 Beate Sick Introduction to Random Forests slides
17. September 2014 Oliver Dürr Introduction to git/github slides
10. July 2014 Thoralf Mildenberger Assoziationmining slides R
11. June 2014 Thilo Stadelmann Multimedia Analysis: Speaker Recognition slides
21. May 2014 Thilo Stadelmann Multimedia Analysis: Audio Type Classification slides
16. April 2014 Oliver Dürr Community Detection / Graph Drawing slides
26. March 2014 Melanie Imhof Multifaceted Feature Set for Information Retrieval slides
26. February 2014 Fatih Uzdilli Sentiment Analysis slides I slides II
5. February 2014 Kurt Stockinger Click Stream Analyse blackboard
15. January 2014 Marcel Dettling Bagging and Boosting slides
11. December 2013 Kurt Stockinger Big Data Analyse mit Hadoop slides I slides II
20. November 2013 Thoralf Mildenberger Prediction with Expert Advice slides R