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Topics of today

» Humans and scientists want to understand the “WHY”

» Correlation: birth of statistics — end of causal thinking?

» (Causal) reasoning with Bayesian Networks

» Pearl’s ladder of causation

» Can our statistical and ML/DL models “only do curve fitting” ?

» Historic anecdotes in statistics and ML seen through a causal lens



Humans conscious rises the question of WHY?

God asks for WHAT “I would rather discover one cause
“‘Have you eaten from the tree which | forbade you?” than be the King of Persia.”

Adam answers with WHY _ _

“The woman you gave me for a companion, she gave me The ancient Greek philosopher

fruit from the tree and | ate.” Democritus (460-370 BC)



Galton on the search for causality

Francis Galton (first cousin of Charles
Darwin) was interested to explain how
traits like “intelligence” or “height” is
passed from generation to generation.

Galton in 1877 at the Friday Evening Discourse at
the Royal Institution of Great Britain in London.

Galton presented the “quincunx” (Galton nailboard) as causal model for the inheritance.

Balls “inherit” their position in the quincunx in the same way that humans inherit
their stature or intelligence.

The stability of the observed spread of traits in a population over many
generations contradicted the model and puzzled Galton for years.

Image credits: “The Book of Why”



Galton's discovery of the regression line

Remark: Correlation of IQs of parents and children is only 0.42 https://en.wikipedia.org/wiki/Heritability of 1Q
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For each group of father with fixed IQ, the mean |IQ of their sons is closer to
the overall mean IQ (100) -> Galton aimed for a causal explanation.

All these predicted E(IQ.,,) fall on a “regression line” with slope<1.
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Image credits (changed): https://www.youtube.com/watch?v=alLv5cerjV0c



Galton's discovery of the regression to the mean phenomena
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Also the mean of all fathers who have a son with Q=115 is only 112.

Image credits (changed): https://www.youtube.com/watch?v=alLv5cerjV0c



Galton's discovery of the regression to the mean phenomena
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After switching the role of sons’s IQ and father’s 1Q, we again see
that E(1Q,,6rs) fall on the regression line with the same slope <1.

There is no causality in this plot -> causal thinking seemed unreasonable.

Image credits (changed): https://www.youtube.com/watch?v=alLv5cerjV0c



Pearson’'s mathematical definition of correlation
unmasks “regression to the mean” as statistical phenomena

correlation=0.00 correlation=0.30 correlation=0.60

correlation=0.80 correlation=0.90 correlation=1.00

The correlation c of a bivariate Normal distributed
pair of random variables are given by the slope
of the regression line after standardization!

c quantifies strength of linear relationship
and is only 1 in case of deterministic relationship.

After standardization of the RV:

X1~N(z =0, o7 =1*)
X2~N(u, =0, o5 =1°)
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Regression to the mean occurs in all test-retest situations
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Retesting a extreme group (w/o intervention in between) in a second test leads
in average to a results that are closer to the overall-mean -> to assess
experimentally the effect of an intervention also a control group is needed!



With the correlation statistics was born and abandoned
causality as “unscientific”

“the ultimate scientific statement of description of the relation between two things
can always be thrown back upon... a contingency table [or correlation].”

Karl Pearson (1895-1936), The Grammar of Science

Pearl’s rephrasing of Pearson’s statment:
“data is all there is to science’.

However, Pearson himself wrote several papers
about “spurious correlation” vs “organic correlation”
(meaning organic=causal?) and started the culture of

I n

“think: ‘caused by’, but say: ‘associated with’ ”...
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Quotes of data scientists

“Considerations of causality should be treated as they have always been
in statistics: preferably not at all."

Terry Speed, president of the Biometric Society 1994

In God we trust. All others must bring data.

W. Edwards Deming (1900-1993), statistician and father of the total quality management

The world is one big data problem.

Andrew McAfee, Co-Rector MIT Initiative on the Digital Economy

Data without science is just data.

Elvis Murina, data scientist at ZHAW

See also http://bigdata-madesimple.com/30-tweetable-quotes-data-science/
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Pearl’'s statements

Observing [and statistics and Al] entails detection of regularities

We developed [Al] tools that enabled machines to reason with
uncertainty [Bayesian networks].. then | left the field of Al

Mathematics has not developed the asymmetric language required
to capture our understanding that if X causes Y .

As much as | look into what’s being done with deep learning, | see
they’re all stuck there on the level of associations. Curve fitting.

The book of Why
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
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Probabilistic versus causal reasoning

Traditional statistics, machine learning, Bayesian networks

About associations (stork population and human birth number per year are correlated)
The dream is a models for the joined distribution of the data

Conditional distribution are modeled by regression or classification

(if we observe a certain number of storks, what is our best estimate of human birth rate?)

Causal models

About causation (storks do not causally affect human birth rate)

The dream is a models for the data generation

Predict results of interventions

(if we change the number of storks, what will happen

with the human birth rate?)

13



Pearl's ladder

Image credits: “The Book of Why”

of causality
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FIGURE 1.2. The Ladder of Causation, with representative organisms at each

level. Most animals, as well as present-day learning machines, are on the first
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On the first rung of the ladder
Pure regression can only model associations

P. Buhlman (ETH): “Pure regression is intrinsically the wrong tool”

(to understand causal relationships between predictors and
outcome and to plan interventions based on observational data)”

Regression — the “statistical workhorse”: the wrong approach

we could use linear model (fitted from n observational data)

P
Y=> BX+e,
j=1
Var(Xj) = 1 for all j

|3;| measures the effect of variable X; in terms of “association”

I.e. change of Y as afunction of X; when keeping all other
variables Xj fixed

- not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these others are not (cannot be) kept fixed

https://www.youtube.com/watch?v=JBtxRUdmvx4
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How we work with rung-1 regression or M

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT.

xkcd.com

16



On the first rung of the ladder

DL is currently as good as a ensemble of pigeons ;

https://www.youtube.com/watch?v=NsV6S8EsCOE

& PLOS | one

e pigeon reaches up to 84% accuracy

E OPEMACCESS
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Pigeons (Columba livia) as Trainable
Observers of Pathology and Radiology Breast
Cancer Images

Richard M. Levenson' *, Elizabeth A. Krupinski®, Victor M. Navarro®, Edward
A Wasserman®*

1 Deparmentof Pafhology and Laboratony Medicine, Unnersity of C alifornia Davis Medical Center,
Eacramento, Califomia, United States of Amenica, 2 Deparment of Paychological and Brain Sgences, The
University of lowa, lowa City, lowa, United States of Amenica, 3 Deparment of Radiclogy & Imaging
Eciences, College of Medicing, Emary University, Atlants, Georgia, Unied Stales of Amernica

* levenson @uocdsvis.edu (AML); & d-was serman @ uiows.edu (EAW)

Abstract

Pathologists and radiclogists spend years acquiring and refining their medically essential
visual skills, so itis of considerable interast to understand how this process actually unfolds
and what image features and properties are critical for accurate diagnostic performance.
Key insights into human behavicral tasks can often be obtained by using appropriate animal
models. We neport here that pigeons (Columba livia)—which share many visual system
properties with humans—can serve as promising surrogate obsarvers of medical images, a
capability not previously documented. The birds proved to have a remarkable ability to dis-
tinguish benign from malignant human breast histopathology after training with differential
food reinforcement; even more importantly, the pigeons wene able to generalize what they
had leamed when confronted with novel image sets. The birds” histological accuracy, like
that of humans, was moedesty affected by the presence or absence of color as well as by
degreas of image comprassion, but these impacts could be amelicrated with further training.
Turning to radicloegy, the birds proved to be similarly capable of detecting cancer-relevant
microcalcifications on mammogram images. However, when given a different (and for
humans guite difficult) task—namely, classification of suspicious mammaographic densities
(masses }—the pigeons proved to be capable only of image memon zation and were unable
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On the first rung of the ladder

DL is currently as good as an ensemble of pigeons

Elvis’s DL model achieves ~90% accuracy on image level

Probability for
ADC and LSCC

_,
b

= 5

Oliver and Elvis still struggﬁr_@with the pigeon bencm

= 3

A singlé pigeon: 84% accuracy
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Can and should we try to learn about

causal relationships?

If yes - what and how can we learn?

19



Ascending the second rung by going from “seeing” to “doing”

Research question:

What is the distribution of the blood
pressure if people do not drink coffee?

Conditioning: /

Filter - restrict on non-coffee drinker

8210yd Aq JayulIp 88j00-uou

P(BP | coffee =0)

“Do”-Operator:
Full population, after intervention
that prohibits coffee consume

P (BP | do(coftfee = O))

9210Y0 Aq JayulIp 98}J00

20



On the second "doing” rung of the ladder

Assessing the effect of intervention by randomized trials (RT)

?
treatment X1 P@

RCT through the lens of a causal graphical model

Since the treatment is assigned randomly to both treatment
groups are exchangeable. Hence observed differences of the
outcome in both groups is due to the treatment.

-> Model after collecting data from a RT: outcome~treatment

21



Judea Pearl broke with the taboo of causal reasoning
based on observational data

CAUSALITY

MODELS, REASONING,
_ AND INFERENCE

X

JUDEA PEARL

ACM Turing Award 2011: “For fundamental contributions to artificial
intelligence through the development of a calculus for probabilistic and
causal reasoning."

22



Recap: BN interpretation

A probabilistic Bayesian network is a DAG about association where each
node is a variable that is independent of all non-descendants given its parents

d | o P(D)

06 ] 04

i%d°| 03 |04 |03
i%d' 1 0.05] 025 0.7
il,d* 09 |0.08]| 0.02
iLd' los |03 |02

Intelligence

‘;0

0.1

0.4

31 0.99

0.01

L P()

SAT (Scholastic Assessment Test)
Widely used for college admission

P(SIN

P(LIG)

The example is taken from the great course of Daphne Koller on probabilistic graphical models.
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Recap: Open paths allowing belief to flow

Intelligence 1 Intelligence
\ S E& | unobserved \ S l |

mediator

causal reasoning evidence based reasoning

unobserved

confounder Intelligence

Intelligence

DX 1[{G}

observed |
collider

inter-causal reasoning inter-effect reasoning
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Recap: Closed paths not allowing belief to flow

no flow of (causal) belief no flow of non-causal belief

observed
common influence

GLS[{I

| LL|{G} JL

observed

G mediator SAT

unobserved
collider

To avoid flow of non-causal belief - we must observe confounders!
- we must not observe colliders!

25



From Bayesian networks to causal Bayesian networks

A causal BN is a DAG about causal relationships where again nodes
are variables, but a directed edge represents a potential causal effect.

X1 causes X5 Xo causes X @ @
(X 0 X

X1 and X5 are

@ @ @ causally unrelated

X1 and X5 have a X1 and X5 have a

common cause X3 common effect X3

Causal effects can only be transported along the direction of arrows!

26



Pearl’s backdoor criterion for causal Bayesian Networks

Backdoor paths between X and Y are not directed from
X to Y and transported association is spurious.

» We want to block all backdoor paths

» Determine a set S of “de-confounders” that closes
all backdoor paths and control for these variables.

Observe them and use them as co-variates in your model —
the coefficient in front of X gives then the causal effect of X on Y!

A path is blocked if 1

single triple-segment

is blocked!

blocked triple
O-a-0

"
Og©

controlled variable
observed variable

27



Causal effects are only transported along arrows from X to Y

7con§ To close all backdoor
paths we must adjust

founder
N / for this confounder.

Here we have two paths along which a causal effect can be transported.

(If we add the direct and the indirect causal effect we get the total causal effect.)

All black paths do either transport non-causal belief or block the flow of belief.

(here only the upper right backdoor path is open as long as we do not adjust for the common cause of x and y, all other backdoor paths
are blocked by unobserved colliders)

28



The classic epidemiological definition of confounding

A treatment X and outcome Y is confounded by a variable Z if

(1) Z associated with X only using statistical
terms and not sufficient!

(2) Z associated with Y even if X is fixed.

Simpsons addition in 1951

To avoid adjusting for a mediator this has been supplemented in recent years by

Added causal terms

(3) Z should not be on the causal path between X and Y. ] still not sufficient!

29



The classical confounding definition allows M bias

Backdoor path from X to Y

X: smoking

Y: lung disease

B: seat-belt usage

A: following social norms
C: health risk taking

B fulfils all 3 confounder criteria:
- B is associated with X
- B is associated with Y (even if X is fixed)

- B does not lie on a causal path Xto Y

However, controlling for B opens the backdoor
path and introduces spurious association!

A study conducted in 2006 investigating the
effect of smoking (X) on lung diseases (Y)
listed seat-belt usage (B) as one of the first
variables to be controlled.

30



Pearl’s valid definition of the concept “confounding”

Confounding, is anything that leads to a
discrepancy between the conditional probability

and the interventional probability between X and Y-

P(Y | X) # P(Y | do(X))

31



Can we do causal/intervential inference from observational data?

The very short answer: No!

Principle be Cartwright (1989): No causes in — no causes out!

observational
data

+ '
P(y | do(X = x,)

Expression without do (!!)

which only uses information

gk from observed JPD P

Backdoor criterion
or frontdoor criterion
or 3 Rules of do-Calculus

32



Ascending the third "imaging” rung of the ladder
Causal BN to predict intervention effect

Intervention at variable X1:
do(X1=x1) implying that all arrows into X1 are deleted

Assumption: the remaining graphical model does not change under the intervention.

before intervention after intervention on X1

LS
o w

chain rule for BN

P(X,.X,.X,,X,.X5) = P(X,.X,.X;.X,. X5 | do(X, =x)) =
P(Xz) ) P(Xl ‘Xz) ’ P(X3 |X1) ’ P(X4 |X1 aX3 ’Xs) ’ P(Xs) P(Xz) -1 P(X3 |X1 =X ) ’ P(X4 |X1 =X 9X3 aX5) ’ P(Xs)
Il
P (X1 =x )
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On the third "imaging” rung of the ladder: |magmg
"do” operator opens the door to rung 3

What if??

GeaoDnl

' I'-I}.Iulil'-l'.l.l':l nno D|

Ao
s “*l."
ReGan,
How would the world Would he live longer if Would we have earned
look like if Dino’s would he would always eat an more if we had
have survived? apple instead of a cake? doubled the price?

The unobserved outcome is called counterfactual.
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Historic anecdotes of

of (non-) causal thinking



Are smoking mothers for underweighted newborns beneficial?

Since 1960 data on newborns showed consistently that low-birth-weight babies
of smoking mothers had a better survival rate than those of nonsmokers.

This paradox was discussed for 40 years!

An article by Tyler VanderWeele in the 2014 issue of the International Journal
of Epidemiology nails the explanation perfectly and contains a causal diagram:

Smoking
Birth Weight Mortality of Child

Birth Defect

Association is due to a collider bias caused by conditioning on low birth weight.

Image credits: “The Book of Why” 36



BB Seminar ended here, discussion started

37



The smoking debate
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1948, Doll and Bradford Hill investigated smoking as potential cause for lung cancer.



Marketing of the tobacco industry

George Weissman,
vice president of Philip Morris, 1954

“If we had any thought or knowledge
that in any way we were selling a
product harmful to consumers, we
would stop business tomorrow.”

- “I’ll Be Right Over!”
«++ 24 hours a day your dector  ® Faw..movels,..maton petyms. . kave bern

R i written shout the "man i whee.* L3
5 on dﬂ-l}l sea guardiug rourine he lives mere drama; and displays mare
rt devurrom to the oath he hag talien, than the most
health. .. protecting and it g e il il Ever wvent. Aded; b gaka
prnfmging bﬂ? T wasperial credit, Wien there’s o jab vo ds, he daes
i A Few winks of L|=ep... alew rIJ.IIBa{ A g

reene. o ind he's buck ot that jeb agaln. ..

Aveording fv a
recenl independent
nativnwide survey:

More Doctors

Smoke Camels
than any other cigarefie

Image credits: “The Book of Why”



Observed association between lung cancer and smoking

« 99.7% of lung cancer patients were smokers
(retrospective study result)

« smokers have 30-times higher probability to die by

lung-cancer within the next 5 years than non-smokers
(Hill's 60,000 British physicians prospective study result)

* heavy smokers have 90-times higher probability to die by

lung-cancer within the next 5 years than non-smokers
(prospective study result)



Fisher's skeptics of the smoking-cancer connection

Ronald Fisher
(1890-1962)

Smoking Gene

Smoking Lung Cancer

Fisher insisted, that the observed association could be due to an confounder
such as smoking gene causing the longing for smoking and a higher risk for LC.



Cornfield's inequality

RR, <RR

unohs

R R{)m - QI ) RRmmb.s-

Jerome Cornfield ek o TR0 Ao
(1912-1979)

+tl-g g _PU|E)
P(U | E)

The unknown confounder U needs to be >K-times more
common in smokers to explain a K-times higher risk for
LC of smokers compared to non-smokers (RR=K).

If RR=10 and 10% of non-smokers have the “smoking
gene,” then 100% of the smokers would have to have it.

If 12% of non-smokers have the smoking gene, then it

for the association between smoking and cancer.

See also http://www.statlit.org/Cornfield.htm

becomes impossible for the cancer gene to account fully
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Front-door criterion can handle unobserved confounder

U

Smoaking Gene

=@
Smoking Tar Cancer
X Z Y

For a proof of the front door approach see figure 7.4 in “The Book of Why”
Anytime the causal effect of X on Y is confounded by one set of variables (U) and mediated by another (Z) and the
mediating variables are shielded from the effects of U, then you can estimate X’s effect on Y from observational data.

In this way we can determine the causal effect of Smoking on LC.
The corresponding formula only requires observable probabilities:

P(Y| do(X)) = ¥, P(Z=2,X) 3, P(Y| X = x, Z=2) P(X = X)
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Application: Effect estimation of a job training program
Motivation

neglected

Signed Up Showed Up Earnings

to job training to job training

Observational data from Job Training Partnership Act (JTPA) Study1987-89.

After estimating the intervention effect from observational study data by using
the front-door formula, a randomized trial was performed showing an effect
that almost perfectly matched the predicted effect!

Glynn, A., and Kashin, K. (2018). Front-door versus back-door adjustment with unmeasured confounding:
Bias formulas for front-door and hybrid adjustments. Journal of the American Statistical Association.

Image credits: “The Book of Why” 44



Pearl's statements about the future of AI

Interview question: What are the prospects for having machines that
share our intuition about cause and effect?

Pearl’s answer:

We have to equip machines with a [causal] model of the environment. If a
machine does not have a model of reality, you cannot expect the machine to
behave intelligently in that reality.

The first step, one that will take place in maybe 10 years, is that conceptual
models of reality will be programmed by humans.

The next step will be that machines will postulate such models on their own
and will verify and refine them based on empirical evidence.

https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
https://www.acm.org/turing-award-50/video/neural-nets
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Thanks for your attention!
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