

Deep Learning for Visual Computing

Prof. Dr. Bernd Freisleben

Department of Mathematics & Computer Science University of Marburg, Germany freisleben@uni-marburg.de

Overview

- Deep Learning
- Visual Computing
- Deep Learning for Visual Computing @ Marburg
 - Semantic Segmentation
 - Object Detection
 - Concept Detection / Person Recognition / Text Spotting
 - Similarity Search
- Conclusion

Deep Learning

Machine Learning

"Field of study that gives computers the ability to <u>learn</u> without being explicitly <u>programmed</u>"

Machine Learning vs. Traditional Programming

Machine Learning for Visual Computing

Deep Learning

• Deep learning seeks to learn hierarchical representations (i.e., features) automatically through multiple stages of processing

Text: character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

Deep Neural Networks

Why "deep" and not "fat"?

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

can be realized by a network with one hidden layer

(given enough hidden neurons)

Example: 200x200 image

- a) fat & fully connected:
 40,000 hidden units
 => 1.6 billion parameters
- a) deep & 5x5 convolutionkernel: 100 feature maps=> 2,500 parameters

What is a Convolution?

- convolution = correlation (in image processing)
- inspired by receptive fields of the visual cortex

 (4×0)

→ fast computation, no significant loss of precision

Rectified Linear Unit (ReLU)

Feature Maps

Feature Maps before Contrast Normalization

CNN Architecture Examples

Recipe for Deep Learning

In theory: no need to write code!

- 1. Order GPU(s) + NAS
- 2. Install deep learning framework
- Label data (find people) 3.
- Convert data (run a script) 4.
- 5. Define network (edit a file)
- 6. Define solver (edit a file)
- 7. Train (pretrained weights) (run a script)

MINERVA

mxnet

SGD, Adam, RMSprop, AdaGrad, Nesterov...

Recipe for Deep Learning: If it doesn't work well...

- Data preprocessing / data augmentation: check labels, mean/variance...
- Activation functions: use ReLU, try Leaky ReLU/Maxout/ELU, don't use sigmoid...
- Weight initialization: random, pretrained, non-zero weights...
- Gradient checking: ensure backward pass is correct...
- Parameter adaptation: learning rate, momentum, batch size...
- Regularization: over/underfitting, batch normalization, dropout, weight decay...
- Architecture modification: add/remove layers, change gradient solvers...
- Evaluation: analyze/visualize internal network states, model ensembles

Deep Learning: Current Hot Topics

Theory

- network visualization
- dealing with uncertainty, causal reasoning, explainable behavior
- information bottleneck

Representation

- data sequences
- spatial/temporal data, data fusion
- probabilistic relational models

Approaches

- cost-sensitive learning (data augmentation)
- active learning (learning algorithm interactively queries user)
- transfer learning (use trained algorithm for other domains)
- ensemble learning (use multiple learning algorithms)
- sequential learning (use recurrent neural networks)
- semi-supervised learning (use partially labeled data)
- unsupervised competitive learning (Generative Adversarial Networks, GANs)

Visual Computing

Problem: The Semantic Gap

What the neural network sees

800 x 600 x 3 (3 channels RGB)

What we see

Visual Computing Tasks

Semantic Segmentation + Localization Detection GRASS, CAT, TREE, SKY No objects, just pixels Classification Detection CAT DOG, DOG, CAT Multiple Objects

Visual Computing Tasks

Person Detection + Recognition

Person X

Face, Head, Eyes, Body, Pedestrian, Crowd

Text Spotting

Gewerkschaftsberatung

Script, Video OCR, Logos License Plates, Ad Banners

Concept Detection

Sunset, Sea, Beach Walk

Semantic Concepts

Visual Computing Tasks

Similarity Search

Activity Recognition

walk skate

Actions / Movements / Processes / Task Flows

Image/Video Description

A group of people shopping fruits at an outdoor market

Caption Generation

Challenges

Challenges: Muffin or Chihuahua?

DL4VC@Marburg

Background

- DFG-Project "Content-based Image and Video Search"
 - SFB/FK 615: 2002-2010
 - PAK 509: 2010-2012
- BMBF-Project "MediaGrid: Distributed Analysis of Media Data": 2009-2012
- **BMWI-Project** "Cloud-based Software Services for Semantic Search in Images and Videos": 2011-2014
- DFG-Project "Content-based Search in Videos in the German Broadcast Archive": 2012-2015 and 2018-2020
- **BMWI-Project** "GoVideo Automatic Annotation of Documentary Film- and Video Material": 2014-2016
- BMBF-Project "Florida A Flexible System for Analyzing Video Mass Data": 2016-2019

DL4VC@Marburg Semantic Segmentation

Cloud Segmentation in Satellite Images

- · Cloud impact: traffic, climate, water supply...
- Meteosat Second Generation (MSG) geostationary satellite
- Spinning Enhanced Visible and Infrared Imager (SEVIRI)
 - 12 Channels
 - 3 VISual (RGB)
 - 8 InfraRed (IR)
 - 1 Panchromatic visual
 - Temporal resolution: 15 min
 - → 96 scenes / day
 - Mission start: 2004
 - Spatial resolution: 3 km x 3 km (3712 x 3712 Pixel)

Cloud Segmentation

. CNN based on U-Net

- 7, 8, or 11 channels; data (for Europe: 508 x 508 pixels)
 - Training: ~ 205000 images (2004 2010); test: ~ 35000 images (2012)
- Ground truth: Cloud mask from CM-SAF CMA Product
 - Manually generated decision tree from SEVIRI data 70 pages
- Results (Accuracy)

_	Cloud free	96.0%
_	Cloud contaminated	98.6%
_	Cloud covered	94.8%
_	Snow	99.9%

Example Result

VIS

Groundtruth

Segmentation

Cloud-free = black, cloud-contaminated = gray, cloud-covered = white, snow/ice = blue

Cell Segmentation in Flourescence Microscopy Images

Aim: Determining Cells with Legionella Infestation

Challenges

- Segmentation of the cytoplasm
- Correct separation of cells often only possible based on cell nuclei
- Only few labeled training examples (manual segmentation = high effort)
- → Data augmentation
- → Bounding box based segmentation (per cell/nucleus)
- → Extended Mask-R-CNN architecture

Feature Pyramid Fusion Network

Example Result: Detection

Example Result: Cell Segmentation

DL4VC@Marburg Object Detection

Object Detection in Surveillance Videos

- Object classes:

- Means of transport: car, motorcycle, truck, bicycle, bus, train...

- Luggage: suitcase, backpack, handbag,...

- Clothes: T-shirt, jeans, coat, shirt, blazer, hat,...

- Animals: dog, horse...

- **People**: person

- Car license plates

- UAVs (drones)

- Car models: VW Golf, 1er BMW, Renault Twingo, Audi A8...

Object Detection in Surveillance Videos

Single-Shot Multi-Box Detector (SSD) [Liu et al. 2016]

- Basic model: VGG-16 pretrained on MS COCO
- VGG-16 better than GoogLeNet and ResNet
- SSD 4x faster than Faster Region-based CNN (Faster R-CNN)
- Fine-tuning on surveillance data set (18 h)
 - Training: 2108 images with 31311 objects
- Test (challenges: small objects, motion blur, compression artifacts)
 - 56 surveillance videos (18 h):
 - 2683 images, 31506 objects

Example Results I

Example Results II

Example Results III

Example Results IV

License Plate Detection

• Single-Shot Multi-Box Detector [Liu et al. 2016]

- Basic Model: VGG-16 pretrained on IMAGENET
- Fine-tuning on license plate data set
 - Training: 4224 images with 7351 license plates
 - Validation: 377 images with 634 license plates
- Test
 - OpenALPR benchmark, MRSCORI dataset
 - 638 images with 682 license plates
 - Detection quality: 98.6% AP (Europe), 98.3% AP (USA)

Example: License Plate Detection

Example: Car Model Recognition

- Data acquisition: Webcrawler
- Spam filtering

Spam

Ham

- Data
 - 2,202,842 training images
 - 74 car makes, 835 car models
 - 50 test images per model
- Network architecture: Mobile NASNet
- Example video: https://box.uni-marburg.de/index.php/s/UCNcGanjysU2qHD

Example: Youtube Videos – Knapsack Retrieval

8519 Videos (Berlin, Boston, Dallas, Istanbul, London, Nizza, Paris)

DL4VC@Marburg

Concept Detection
Person Recognition
Text Spotting / Video OCR

German Broadcasting Archive (DRA)

- Founded in 1952
- Charitable foundation and joint institution of the ARD
- Historical collections of scientifically relevant videos
- Cultural heritage of GDR TV broadcasts
 - ~ 100,000 broadcasts (1952 1991)
 - Daily news program "Aktuelle Kamera"
 - Political magazines (e.g., "Prisma")
 - Films, film adaptations and TV series (e.g. "Polizeiruf 110")
 - Entertainment programs (e.g., "Ein Kessel Buntes")
 - Children's and youth programs
 - Advice and sports programs
 - Considerable research interest in GDR and German-German history

Concept Lexicon

- Based on analysis of user search queries
- Focus on queries that are difficult and time-consuming to answer
- 100 GDR-specific concepts
 - Scenes or places
 - Optical industry, supermarket, railroad station, daylight mine, production hall, camping site, kindergarten, shopping hall, kitchen, allotment, ...
 - Events or activities
 - Border control, concert, applauding, handshake, brotherly kiss, wreath ceremony..
 - Objects
 - Trabant, GDR emblem, ambulance, GDR flag, tram, German state railway, ...
 - Persons
 - Teenager, "Abschnittsbevollmächtiger", ...
 - Personalities
 - Erich Honecker, Walter Ulbricht, Hilde Benjamin, Siegmund Jähn, ...

Dataset

- Historical GDR television recordings
- Technically very challenging
 - Many recordings are grayscale
 - Low technical quality (the older, the poorer the video quality)

Training data

- 416,249 video shots
- 118,020 annotated video frames
- 91 concepts (77 evaluated)
- 9 persons

Test data

- 1,545,600 video shots
- ~ 2490 h videos

Concept Detection Examples

Militärparade

Schlot

Plattenbau

Straßenverkehr

Person Recognition Results

Erich Honecker

Christa Wolf

Walter Ulbricht

Hilde Benjamin

Video OCR Results

- 46 text queries, evaluation based on the top-100 results per query
 - => 92.9% Mean Average Precision

DL4VC@Marburg Similarity Search

What is Similarity?

• Semantic vs. pixel based similarity

• Fine-grained image similarity

• Similar?

Similarity Search

- Query by example
- Features based on CNNs
 - Better suited for objects and scenes (semantic content)
 - Less dependent on pixel intensities
- Semantic hashing
 - Learning binary codes for images
 - Compact representation
 - Fast matching
- Two stage approach
 - Coarse-level search based on 64 bit binary codes using a Vantage-Point tree
 - → "Short" list of potential results
 - Fine-level search with 256 bit codes based on the short list

Similarity Search: Semantic Hashing

Similarity Search Results

1st column: query images downloaded from the WWW

Similarity Search Results

Conclusion

- Deep learning = Learning Hierarchical Representations
- Deep learning is highly promising for *visual computing* (but also for *audio processing*, *sensor processing*, and *natural language processing*)
- Current & future work:
 - Anomaly detection in surveillance cameras of chemical process plants
 - Deep learning for e-health / m-health applications
 - Deep learning on mobile devices (Qualcomm 835, Nvidia Jetson TX2)
 - Unsupervised deep learning for network traffic analysis ("packet analytics")
 - Deep reinforcement learning for robotics (UAVs, UGVs, coordination...)
 - Deep learning for sequential data / streams (music, text, clickstreams...)

Slide / Figure Credits

- Markus Mühling, University of Marburg, Germany
- Yousri Kessentini, University of Sfax, Tunisia
- Fei-Fei Lee, Stanford University, USA
- Bart ter Haar Romeny, Eindhoven University of Technology, The Netherlands
- Weifeng Lee et al., University of Arizona, USA
- Qiang Yang, Hongkong University of Science and Technology, China