Universität
Marburg

Deep Learning for Visual Computing

Prof. Dr. Bernd Freisleben
Department of Mathematics \& Computer Science
University of Marburg, Germany
freisleben@uni-marburg.de

Overview

- Deep Learning
- Visual Computing
- Deep Learning for Visual Computing @ Marburg
- Semantic Segmentation
- Object Detection
- Concept Detection / Person Recognition / Text Spotting
- Similarity Search
- Conclusion

Deep Learning

Machine Learning

"Field of study that gives computers the ability to learn without being explicitly programmed"

Machine Learning vs. Traditional Programming

Machine Learning for Visual Computing

Deep Learning

- Deep learning seeks to learn hierarchical representations (i.e., features) automatically through multiple stages of processing

Images: pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object
Text: character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

Deep Neural Networks

Why "deep" and not "fat"?

Any continuous function f

$$
f: R^{N} \rightarrow R^{\mathrm{M}}
$$

can be realized by a network with one hidden layer
(given enough hidden neurons)

Example: 200×200 image
a) fat \& fully connected:

40,000 hidden units
=> 1.6 billion parameters
a) deep \& 5×5 convolution kernel: 100 feature maps
=> 2,500 parameters

What is a Convolution?

Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.

- convolution = correlation (in image processing)
- inspired by receptive fields of the visual cortex

Convolutional Neural Network (CNN)

Feature Activation Map

Convolutional Neural Network (CNN)

Input Image

Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN)

Feature Maps

Feature Maps
before
Contrast
Normalization

CNN Architecture Examples

Recipe for Deep Learning

In theory: no need to write code!

1. Order GPU(s) + NAS
2. Install deep learning framework
3. Label data (find people)
4. Convert data (run a script)

5. Define network (edit a file)
6. Define solver (edit a file)
7. Train (pretrained weights) (run a script)

Recipe for Deep Learning: If it doesn't work well...

- Data preprocessing / data augmentation: check labels, mean/variance...
- Activation functions: use ReLU, try Leaky ReLU/Maxout/ELU, don't use sigmoid...
- Weight initialization: random, pretrained, non-zero weights...
- Gradient checking: ensure backward pass is correct...
- Parameter adaptation: learning rate, momentum, batch size...
- Regularization: over/underfitting, batch normalization, dropout, weight decay...
- Architecture modification: add/remove layers, change gradient solvers...
- Evaluation: analyze/visualize internal network states, model ensembles

Deep Learning: Current Hot Topics

- Theory
- network visualization
- dealing with uncertainty, causal reasoning, explainable behavior
- information bottleneck
- Representation
- data sequences
- spatial/temporal data, data fusion
- probabilistic relational models

- Approaches

- cost-sensitive learning (data augmentation)
- active learning (learning algorithm interactively queries user)
- transfer learning (use trained algorithm for other domains)
- ensemble learning (use multiple learning algorithms)
- sequential learning (use recurrent neural networks)
- semi-supervised learning (use partially labeled data)
- unsupervised competitive learning (Generative Adversarial Networks, GANs)

Visual Computing

Problem: The Semantic Gap

Visual Computing Tasks

Classification

+ Localization

CAT

Object
Detection

DOG, DOG, CAT

Multiple Objects

Visual Computing Tasks

Person Detection

+ Recognition

Person X

Face, Head, Eyes, Body, Pedestrian, Crowd

Text
Spotting

Gera
Gewerkschafts-
beratung
Script, Video OCR, Logos License Plates, Ad Banners

Concept
Detection

Sunset, Sea,
Beach Walk

Semantic Concepts

Visual Computing Tasks

Challenges

Challenges: Muffin or Chihuahua?

DL4VC@Marburg

Background

- DFG-Project „Content-based Image and Video Search"
- SFB/FK 615: 2002-2010
- PAK 509: 2010-2012
- BMBF-Project „MediaGrid: Distributed Analysis of Media Data": 2009-2012
- BMWI-Project „Cloud-based Software Services for Semantic Search in Images and Videos": 2011-2014
- DFG-Project „Content-based Search in Videos in the German Broadcast Archive": 2012-2015 and 2018-2020
- BMWI-Project „GoVideo - Automatic Annotation of Documentary Film- and Video Material": 2014-2016
- BMBF-Project „Florida - A Flexible System for Analyzing Video Mass Data": 2016-2019

DL4VC@Marburg Semantic Segmentation

Cloud Segmentation in Satellite Images

. Cloud impact: traffic, climate, water supply...
. Meteosat Second Generation (MSG) geostationary satellite

- Spinning Enhanced Visible and Infrared Imager (SEVIRI)

12 Channels

- 3 VISual (RGB)
- 8 InfraRed (IR)
- 1 Panchromatic visual
- Temporal resolution: 15 min
$\rightarrow 96$ scenes / day
- Mission start: 2004
- Spatial resolution: $3 \mathrm{~km} \times 3 \mathrm{~km}$ (3712×3712 Pixel)

Cloud Segmentation

. CNN based on U-Net

. 7, 8, or 11 channels; data (for Europe: 508×508 pixels)

- Training: ~ 205000 images (2004-2010); test: ~ 35000 images (2012)
- Ground truth: Cloud mask from CM-SAF CMA Product
- Manually generated decision tree from SEVIRI data - 70 pages
- Results (Accuracy)
- Cloud free 96.0\%
- Cloud contaminated 98.6\%
- Cloud covered 94.8\%
- Snow 99.9\%

Example Result

VIS

Groundtruth

Segmentation

Cloud-free = black, cloud-contaminated = gray, cloud-covered $=$ white, snow/ice $=$ blue

Cell Segmentation in Flourescence Microscopy Images

Aim: Determining Cells with Legionella Infestation

Challenges

- Segmentation of the cytoplasm
- Correct separation of cells often only possible based on cell nuclei
- Only few labeled training examples (manual segmentation = high effort)
\rightarrow Data augmentation
\rightarrow Bounding box based segmentation (per cell/nucleus)
\rightarrow Extended Mask-R-CNN architecture

Feature Pyramid Fusion Network

Example Result: Detection

Cells
Cells + Nuclei

Example Result: Cell Segmentation

DL4VC@Marburg
 Object Detection

Object Detection in Surveillance Videos

- Object classes:
- Means of transport: car, motorcycle, truck, bicycle, bus, train...
- Luggage: suitcase, backpack, handbag,...
- Clothes: T-shirt, jeans, coat, shirt, blazer, hat,...
- Animals: dog, horse...
- People: person
- Car license plates
- UAVs (drones)

- Car models: VW Golf, 1er BMW, Renault Twingo, Audi A8...

Object Detection in Surveillance Videos

- Single-Shot Multi-Box Detector (SSD) [Liu et al. 2016]

- Basic model: VGG-16 pretrained on MS COCO
- VGG-16 better than GoogLeNet and ResNet
- SSD 4x faster than Faster Region-based CNN (Faster R-CNN)
- Fine-tuning on surveillance data set (18 h)
- Training: 2108 images with 31311 objects
- Test (challenges: small objects, motion blur, compression artifacts)
- 56 surveillance videos (18 h):
- 2683 images, 31506 objects

Example Results I

Example Results II

Example Results III

Example Results IV

License Plate Detection

- Single-Shot Multi-Box Detector [Liu et al. 2016]

- Basic Model: VGG-16 pretrained on IMAGENET
- Fine-tuning on license plate data set
- Training:

4224 images with 7351 license plates

- Validation:
- Test
- OpenALPR benchmark, MRSCORI dataset
- 638 images with 682 license plates
- Detection quality: 98.6\% AP (Europe), 98.3\% AP (USA)

Example: License Plate Detection

Example: Car Model Recognition

- Data acquisition: Webcrawler
- Spam filtering
- Data

- 2,202,842 training images
- 74 car makes, 835 car models
- 50 test images per model
- Network architecture: Mobile NASNet
- Example video: https://box.uni-marburg.de/index.php/s/UCNcGanjysU2qHD

Example: Youtube Videos - Knapsack Retrieval

8519 Videos (Berlin, Boston, Dallas, Istanbul, London, Nizza, Paris)

DL4VC@Marburg
 Concept Detection Person Recognition Text Spotting / Video OCR

German Broadcasting Archive (DRA)

- Founded in 1952
- Charitable foundation and joint institution of the ARD
- Historical collections of scientifically relevant videos
- Cultural heritage of GDR TV broadcasts
- ~ 100,000 broadcasts (1952 - 1991)
- Daily news program „Aktuelle Kamera"
- Political magazines (e.g., „Prisma")
- Films, film adaptations and TV series (e.g. „Polizeiruf 110")
- Entertainment programs (e.g., „Ein Kessel Buntes")
- Children's and youth programs
- Advice and sports programs
- Considerable research interest in GDR and German-German history

Concept Lexicon

- Based on analysis of user search queries
- Focus on queries that are difficult and time-consuming to answer
- 100 GDR-specific concepts
- Scenes or places
- Optical industry, supermarket, railroad station, daylight mine, production hall, camping site, kindergarten, shopping hall, kitchen, allotment, ...
- Events or activities
- Border control, concert, applauding, handshake, brotherly kiss, wreath ceremony..
- Objects
- Trabant, GDR emblem, ambulance, GDR flag, tram, German state railway, ...
- Persons
- Teenager, "Abschnittsbevollmächtiger", ...
- Personalities
- Erich Honecker, Walter Ulbricht, Hilde Benjamin, Siegmund Jähn, ...

Dataset

- Historical GDR television recordings
- Technically very challenging
- Many recordings are grayscale
- Low technical quality (the older, the poorer the video quality)

Training data

- 416,249 video shots
- 118,020 annotated video frames
- 91 concepts (77 evaluated)
- 9 persons

Test data

- 1,545,600 video shots
- ~ 2490 h videos

Concept Detection Examples

Person Recognition Results

Erich
Honecker

Christa
Wolf

Walter
Ulbricht

Hilde
Benjamin

Video OCR Results

- 46 text queries, evaluation based on the top-100 results per query
=> 92.9\% Mean Average Precision

DL4VC@Marburg Similarity Search

What is Similarity?

- Semantic vs. pixel based similarity

- Fine-grained image similarity

- Similar?

Similarity Search

- Query by example
- Features based on CNNs
- Better suited for objects and scenes (semantic content)
- Less dependent on pixel intensities
- Semantic hashing
- Learning binary codes for images
- Compact representation
- Fast matching
- Two stage approach

- Coarse-level search based on 64 bit binary codes using a Vantage-Point tree
\rightarrow „Short" list of potential results
- Fine-level search with 256 bit codes based on the short list

Similarity Search: Semantic Hashing

Similarity Search Results

1st column: query images downloaded from the WWW

Similarity Search Results

Conclusion

- Deep learning = Learning Hierarchical Representations
- Deep learning is highly promising for visual computing (but also for audio processing, sensor processing, and natural language processing)
- Current \& future work:
- Anomaly detection in surveillance cameras of chemical process plants
- Deep learning for e-health / m-health applications
- Deep learning on mobile devices (Qualcomm 835, Nvidia Jetson TX2)
- Unsupervised deep learning for network traffic analysis ("packet analytics")
- Deep reinforcement learning for robotics (UAVs, UGVs, coordination...)
- Deep learning for sequential data / streams (music, text, clickstreams...)

Slide / Figure Credits

- Markus Mühling, University of Marburg, Germany
- Yousri Kessentini, University of Sfax, Tunisia
- Fei-Fei Lee, Stanford University, USA
- Bart ter Haar Romeny, Eindhoven University of Technology, The Netherlands
- Weifeng Lee et al., University of Arizona, USA
- Qiang Yang, Hongkong University of Science and Technology, China

