How to capture uncertainties with Neural Networks

A high level intro of probabilistic deep learning models

Beate Sick

Probabilistic Deep Learning is done in team work

The topic was started 2017 with Elvis and Oliver at ZHAW and with Lisa at UZH and since then a lot is going on...

Outline

- Why are traditional neural network models "not probabilistic"?
- How can a NN model capture the data inherent variation?
 → spoiler: by modeling a parametric conditional probability distribution (CPD)
- How to capture the uncertainty of the parameters that fix the CPD?
 → spoiler: use Bayesian methods to get a distribution of plausible parameter values
- Aleatoric and epistemic uncertainty: The new buzzwords in the field
- Using epistemic uncertainty to identify novel classes in a real world classification task.

Probabilistic Neural Networks for simple regression

Can we predict the blood pressure from the age of a woman?

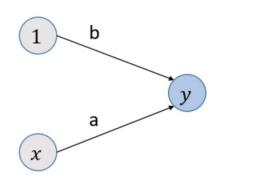
Hypothesis: Knowing the age of a woman helps us to predict the blood pressure.

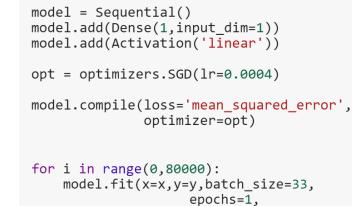
People say that age is just a state of mind. I say it's more about the state of your body.

Geoffrey Parfitt

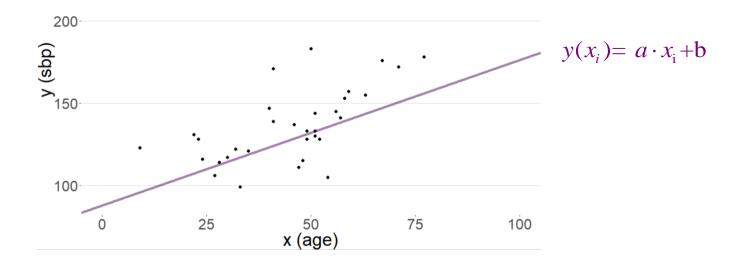
The **sbp** (systolic blood pressure) tend to increase with **ag**e.

Simple regression via a NN: no probabilistic model in mind





verbose = 0)

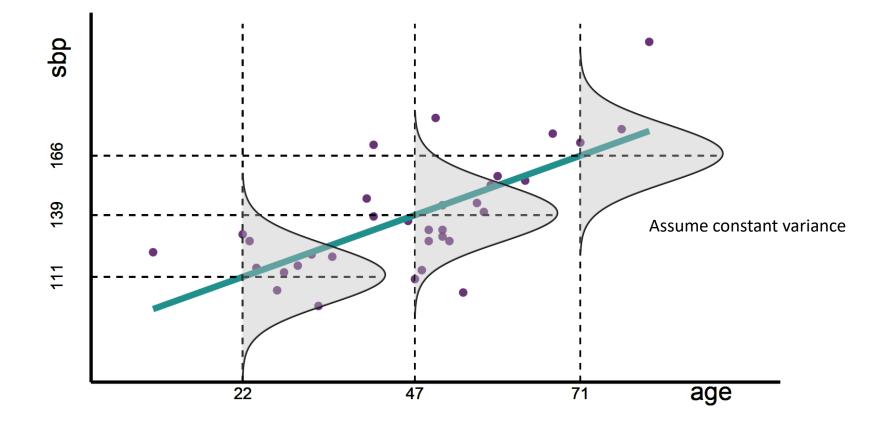


How to express uncertainty in statistics or machine learning?

- Probability is the language of uncertainty
- Probability distributions are the tool to quantify uncertainties

CPD Conditional Probability Distribution

Fitting a probabilistic model allows to capture variations



For each age (x-position) we have fitted a whole distribution of possible sbp values (y-values or response values – here systolic blood pressure).

Simple linear regression models the μ_x -parameter of N(μ_x, σ^2)

Traditional view with focus on means and residuals:

 $\mathbf{y}_i = \beta_0 + \beta_1 \cdot x_{i1} + \varepsilon_i , \ \varepsilon_i \sim \mathbf{N}(0, \sigma^2)$

We model the expected value:

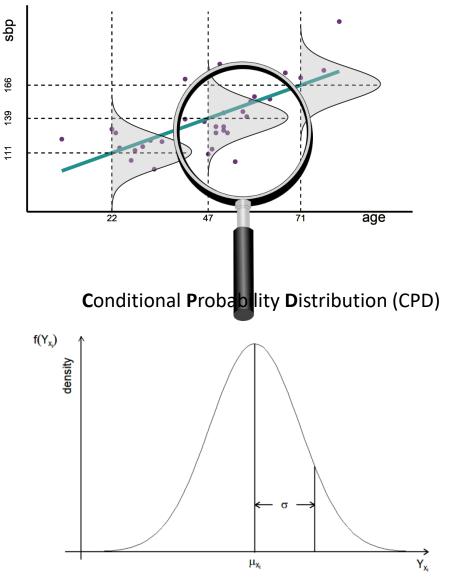
 $\mu_{x_i} = a \cdot x_i + b$

Slightly changed view with focus on conditional distributions:

 $Y_{X_i} = (Y|X_i) \sim N(\mu_{x_i}, \sigma^2)$

We model the μ_{χ_i} -parameter of the CPD:

 $\mu_{x_i} = a \cdot x_i + b$



Bird view on a probabilistic prediction model

Input

Artificial Intelligence ;-)

Outcome distribution

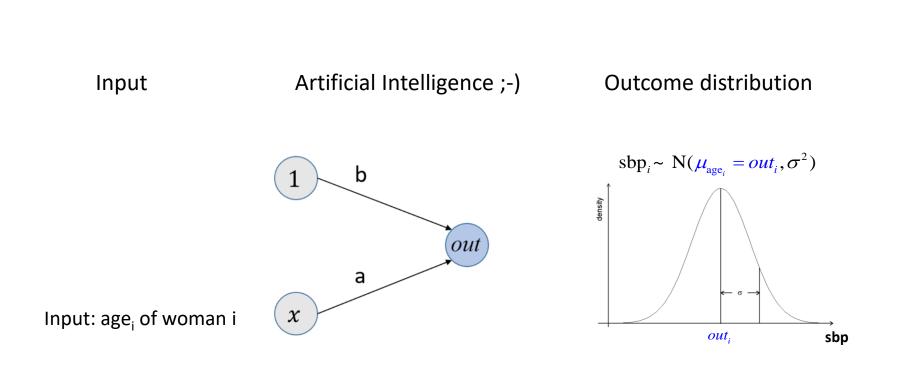
Parameter for CPD

 $\mu_{x_i} \sigma_{x_i}$

 x_i

Input X

Using a neural network for simple linear regression



 $out_i = \mu_{x_i} = a \cdot x_i + b$

Fitting the CPD parameter via Maximum Likelihood

How to find the weights in the NN that yield good μ -estimates?

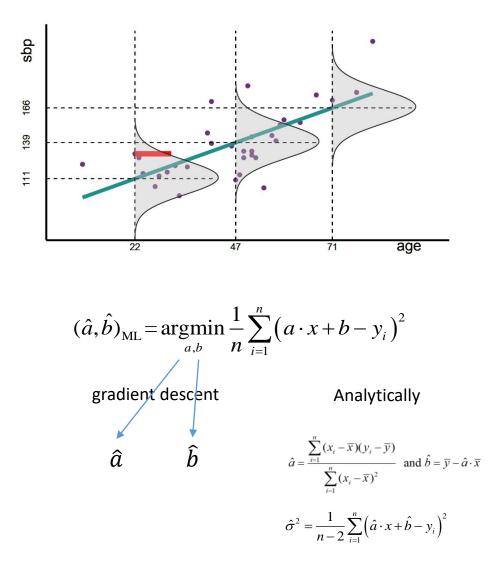
$$\begin{array}{c} 1 \quad b \\ & \\ & \\ a \end{array} \quad Y_{x_i} \sim N(\mu_{x_i} = out_{x_i}, \sigma^2) \end{array}$$

Maximum Likelihood principle:

$$\mathbf{w}_{\mathrm{ML}} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1}^{n} f\left(y_{i} \mid x_{i}, \mathbf{w}\right)$$

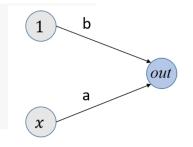
$$w = \operatorname{argmin}_{W} \left\{ \sum_{i=1}^{n} -\log f(y_{i}|x_{i}, w) \right\}$$
$$w = \operatorname{argmin}_{W} \left\{ \sum_{i=1}^{n} -\log(\frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot e^{-\frac{(y_{i}-\mu_{x_{i}})^{2}}{2\sigma^{2}}}) \right\}$$
$$w = \operatorname{argmin}_{W} \left\{ \sum_{i=1}^{n} -\log(\frac{1}{\sqrt{2\pi\sigma^{2}}}) - \frac{(\mu_{x_{i}}-y_{i})^{2}}{2\sigma^{2}} \right\}$$

$$w = argmin_{w} \left\{ \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (\mu_{x_{i}} - y_{i})^{2} \right\}$$



Few code lines to fit the model

```
#Build model.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
model.compile(loss='mse', optimizer="adam", metrics=['accuracy'])
model.summary()
model.fit(x,y,batch_size=150,epochs=12000,verbose=0)
```



Model: "sequential"

Layer (type) Output Shape Param # dense (Dense) (None, 1) 2 Total params: 2 Trainable params: 2 Non-trainable params: 0

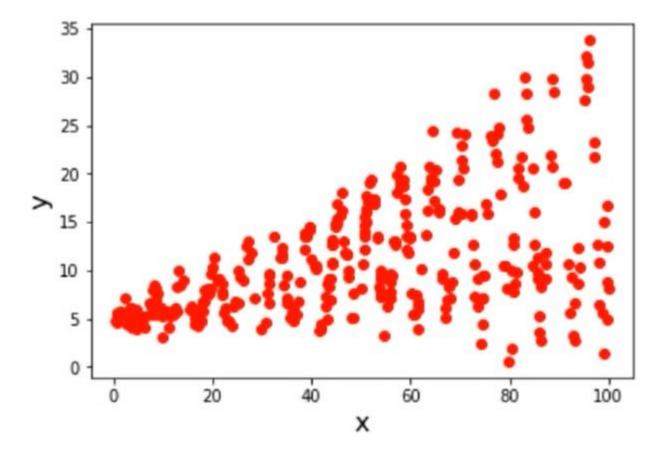
<tensorflow.python.keras.callbacks.History at 0x7f3aa5aedc50>

```
model.get_weights()
```

```
[array([[0.13853021]], dtype=float32), array([4.9734774], dtype=float32)]
```

As machine learner we are interested in the outcome prediction, not in the parameter values!

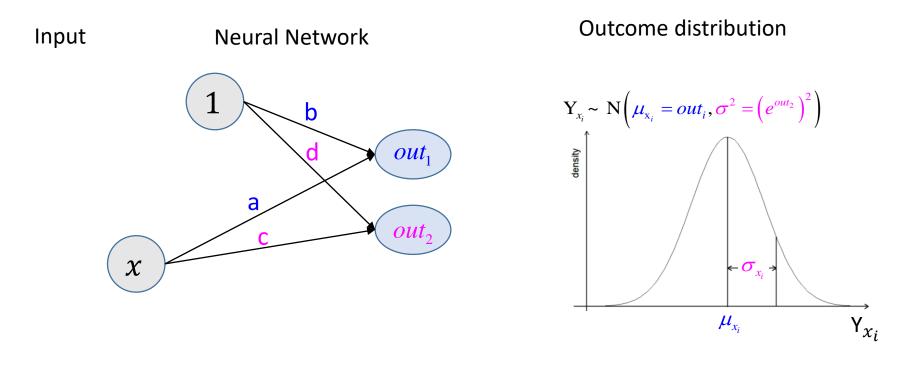
How to do linear regression with non-constant variance?



Idea 1: Transform data so that variance is stable.

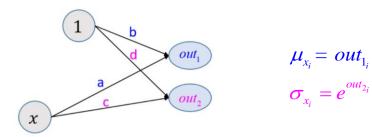
Idea 2: Fit a conditional probability distribution where both parameters (μ , σ^2) depend on x.

How to do linear regression with non-constant variance?



$$out_{1_i} = a \cdot x + b \qquad \mu_{x_i} = out_{1_i}$$
$$out_{2_i} = c \cdot x_i + d \qquad \sigma_{x_i} = e^{out_{2_i}}$$

How to find the weights in the NN that yield good μ -estimates?



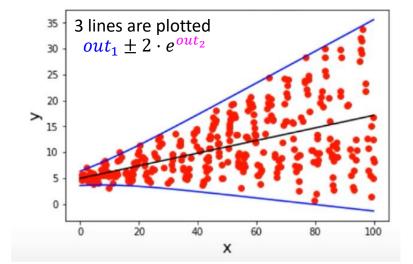
$$\mathbf{Y}_{x_i} \sim \mathbf{N} \left(\boldsymbol{\mu}_{x_i} = out_i, \boldsymbol{\sigma}^2 = \left(e^{out_2} \right)^2 \right)$$

Maximum Likelihood principle:

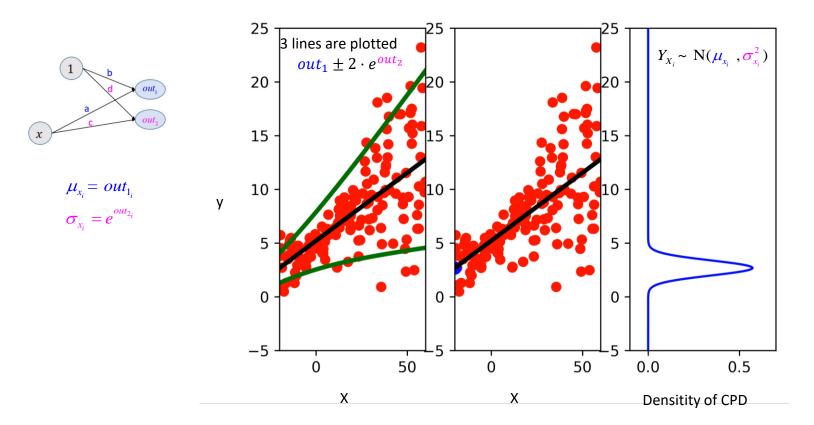
$$\mathbf{w}_{\mathrm{ML}} = \underset{\mathbf{w}}{\operatorname{argmin}} \prod_{i=1}^{n} f\left(y_{i} \mid x_{i}, \mathbf{w}\right)$$

$$w = argmin_{w} \left\{ \sum_{i=1}^{n} -log(\frac{1}{\sqrt{2\pi\sigma^{2}}}) - \frac{(\mu_{x_{i}} - y_{i})^{2}}{2\sigma^{2}} \right\}$$

gradient descent
 $\hat{a}, \hat{b}, \hat{c}, \hat{d}$



Outcome CPD is given by its parameter values

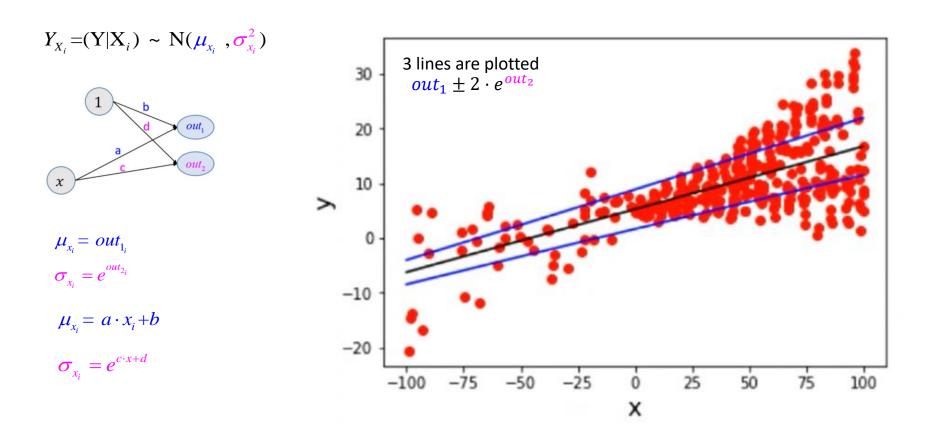


In traditional linear regression we only model the μ -parameter of the CPD as dependent on x and assume that the variance σ^2 does not depend on x.

 $Y_{X_i} = (Y|X_i) \sim N(\mu_{x_i}, \sigma_{x_i}^2) \qquad \mu_{x_i} = a \cdot x_i + b \qquad \sigma_{x_i} = e^{c \cdot x + d}$

depicted as blue dot

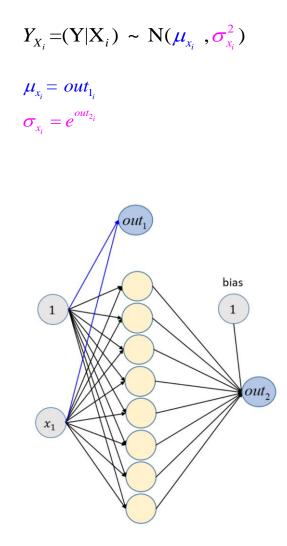
Lets use the same NN architecture for a different data set

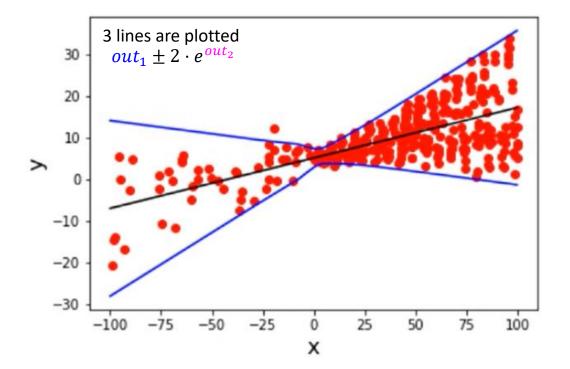


What is going wrong?

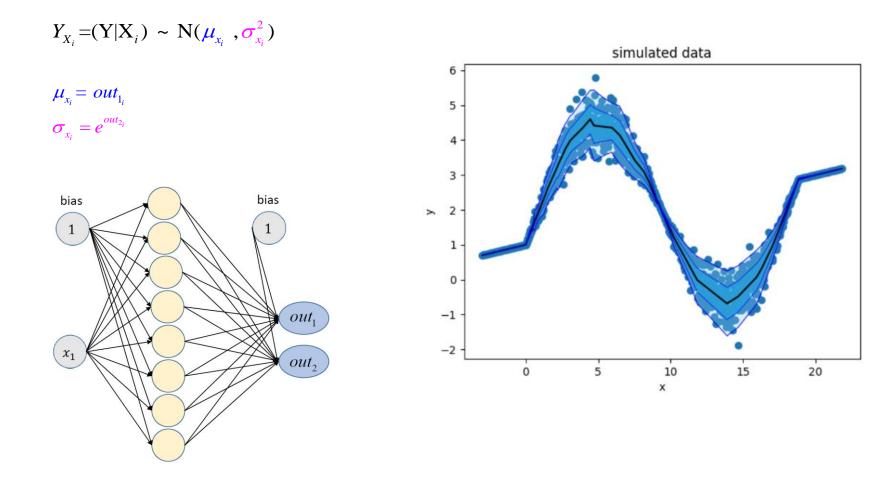
Without hidden layer out_2 is a linear function of x \rightarrow Sigma is a monotone function of x!

NN architecture for a non-monotone relation of input and variance





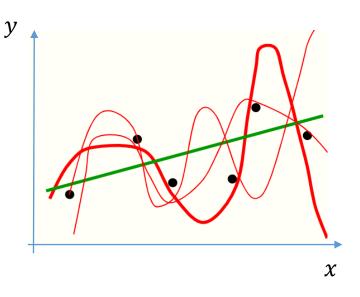
NN architecture to fit non-linear heteroscatic data



Parameter uncertainty via Bayesian approach

Recap: Bayesian models have distributions over their parameter

Bayesian fit of a polynomial function with 6 parameters $\hat{y} = \hat{\omega}_0 + \hat{\omega}_1 \cdot x + \hat{\omega}_2 \cdot x^2 + \hat{\omega}_3 \cdot x^3 + \hat{\omega}_4 \cdot x^4 + \hat{\omega}_5 \cdot x^5$ with $\hat{\omega}_0 \sim \text{Distribution}_{\theta_0}$, e.g. $N(\mu_0, \sigma_0^2)$... $\hat{\omega}_5 \sim \text{Distribution}_{\theta_5}$, e.g. $N(\mu_5, \sigma_5^2)$



A fitted Bayesian model represents not 1 polynomial but a distribution of polynomials.

Frequentist's vs Bayesian's answer when asked to do prediction

Frequentist's strategy:

You can only use a complex model if you have enough data!

Bayesian's strategy:

Use the model complexity you believe in.

Do not just use the best fitting model.

Do use the full posterior distribution over parameter settings leading to vague predictions since many different parameter settings have significant posterior probability.

 $\int p(\mathbf{y} | \mathbf{x}, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y} | \mathbf{x}, \boldsymbol{\omega}) \cdot p(\boldsymbol{\omega} | \mathbf{X}, \mathbf{Y}) d\boldsymbol{\omega}$

prediction via marginalization over ω :

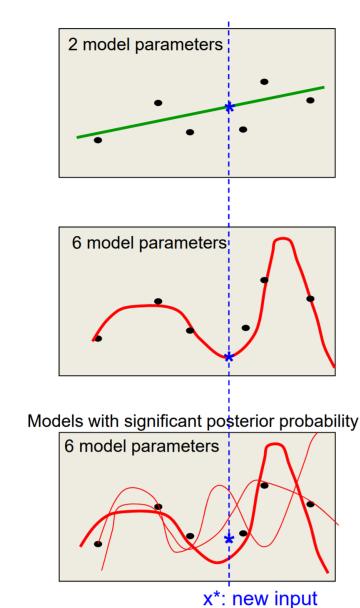


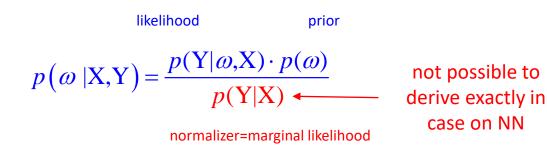
Image credits: Hinton coursera course

Bayesian framework

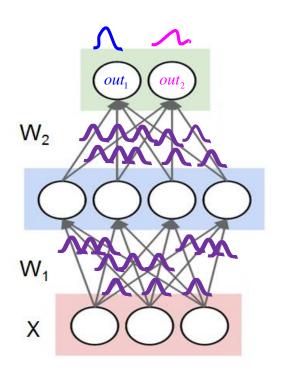
- In Bayesian Modeling we define a prior distribution over the parameter W: W_i~N(0, I) defining p(w_i)
- For regression NN we have the likelihood:

$$\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(\mu_{x_{i}}-y_{i}})^{2}}{2\sigma^{2}}$$

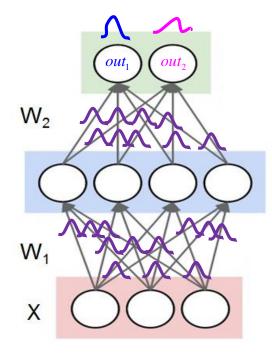
 Given a dataset X, Y we then look for the posteriori distribution capturing the most probable model parameter given the observed data



 $Y_{X_i} = (Y|X_i) \sim N(\mu_{x_i}, \sigma_{x_i}^2)$ $\mu_{x_i} = out_{1_i}$ $\sigma_{x_i} = \ln(1 + e^{out_{2_i}})$

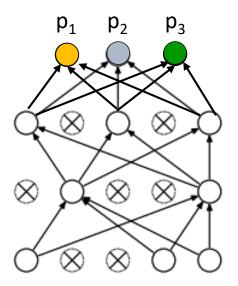


Approximate Bayesian NN by variational inference



TFp

→ We should sample from weight distribution during test time

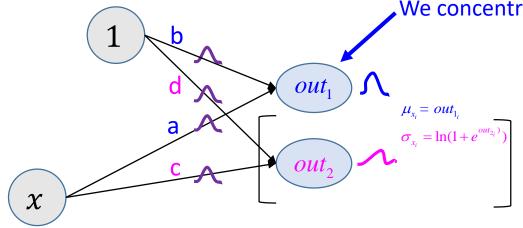


MC Dropout Randomly drop nodes in each run → Ususally done during training

Oliver, Elvis and I plan to give additional BBSs on the theory and frameworks of Bayesian DL models.

There was a BBS on Dropout as Bayesian Approximation method: <u>https://tensorchiefs.github.io/bbs/files/dropouts-brownbag.pdf</u> *Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142

Bayesian NN provide uncertainty on the parameter values



We concentrate on the uncertainty of $\mu_{x_i} = out_{1_i}$

Predictive distribution

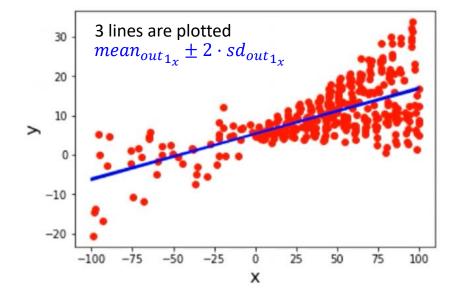
$$p(\mu \mid x, w = (a, b, c, d))$$

Can be approximated by sampling realized by repeated predictions

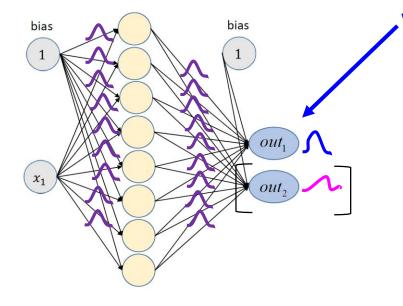
To indicate the uncertainty about the μ_{x_i} we plot here a curve for $mean_{out_{1_x}}$ and two curves for $mean_{out_{1_x}} \pm 2 \cdot sd_{out_{1_x}}$

We would expect higher uncertainty, if we have less data – here the uncertainty is incredible small – why?

There is no hidden layer \rightarrow linear fit over whole range, we can use all points to estimate this line (only 2 df)!



NN with hidden layers do not impose a linear model



Hidden layers

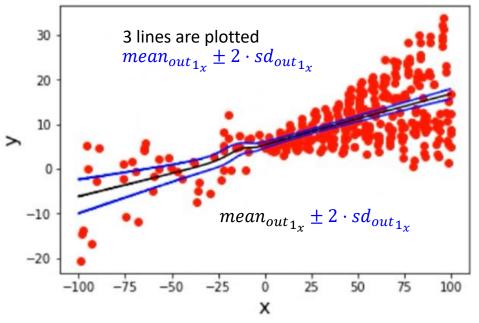
→ no constrain that allow to borrow infromatin from whole range $meat_{out_{1_x}}$ needs to be estimated locally from few data → large uncertaincy about μ_{x_i} We concentrate on the uncertainty of $\boldsymbol{\mu}$

Predictive distribution

$$p(\mu | x, w = (a, b, c, d))$$

Can be approximated by sampling realized by repeated predictions

With 2 hidden layers (30,20)



Aleatoric uncertainty & Epistemic uncertainty

Getting philosophical - Epistemology and Aleatoricism

Epistemology is the branch of philosophy

concerned with the theory of knowledge.

The word derives from the Greek word epistēmē, meaning 'knowledge

https://en.wikipedia.org/wiki/Epistemology

Aleatoricism is the incorporation of

chance into the process of creation.

The word derives from the Latin word alea, the rolling of dice.

https://en.wikipedia.org/wiki/Aleatoricism https://en.wikipedia.org/wiki/Alea iacta est

Plato · Kant · Nietzsche Buddha · Confucius · Averroes

Alea iacta est

A random experiment with two kinds of uncertainties

- We pull a poker chip out of a bag with mixed poker chips (black or blue) and toss it
 - Sometimes we get a black chip and sometimes a blue chip
 - In 50% of the tosses we see the side with the emoji pic otherwise the backside

1) Pull a chip

2) Toss the chip

Observe color and face of the chip

A random experiment with two kinds of uncertainties

- The uncertainties on the color and the face of the drawn and tossed chip are different
 - w/o any knowledge we would assign a probability of 0.5 on both colors and faces
 - By collecting data we gain knowledge about the color probability: epistemic
 - The random tossing process gives always a 50% chance to both faces: aleatoric

"Aleatoric" and "Epistemic" in probabilistic models - my understanding

«aleatoric uncertainty» = inherent data uncertainty

due to the stochastic process that generates the data captured by the fitted parametric distribution (CPD) → cannot be reduced by providing more training data

«epistemic uncertainty» = uncertainty about the parameter values

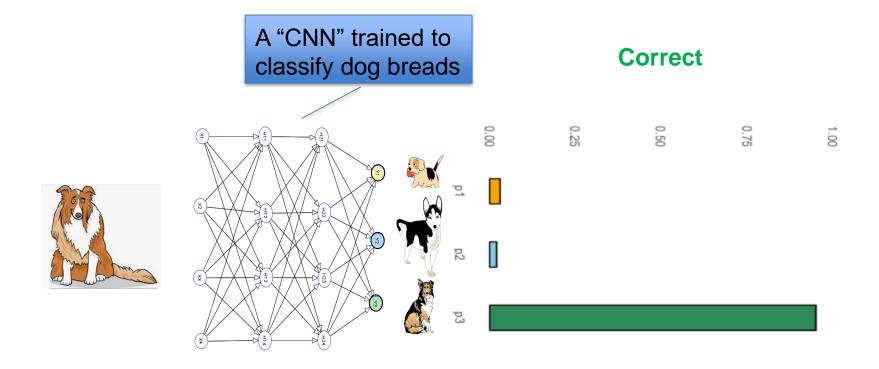
Need to learn about the composition of the bag

captured by CIs or predictive distributions

 \rightarrow can be reduced by providing more training data

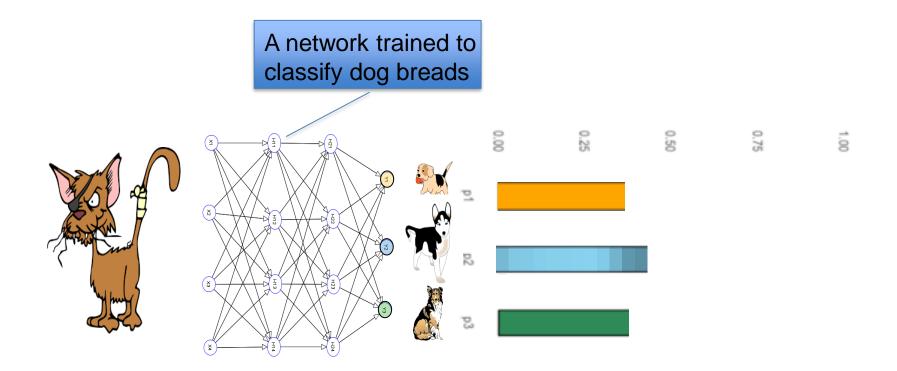
Probabilistic Deep Learning for image classification

DL revolutionized the field of image classification



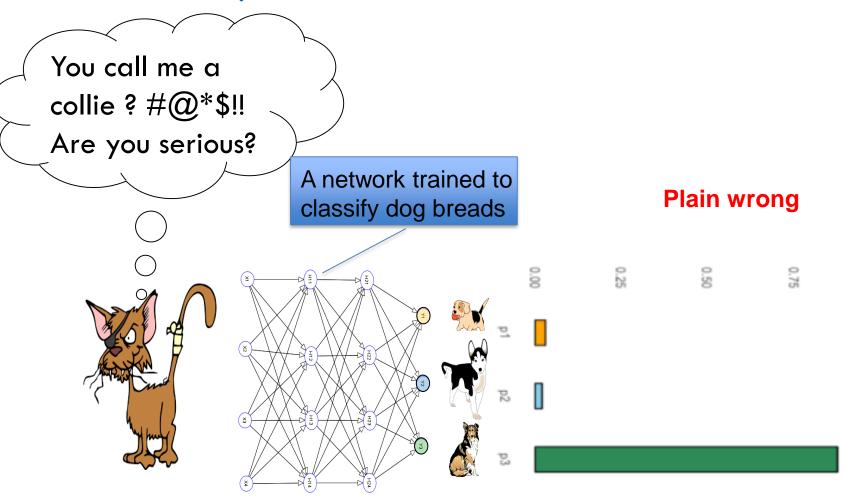
We fit a probabilistic model:

We got a CPD (multinomial) which captures the aleatoric variablility. The parameter (p_1, p_2, p_3) of the CPD are estimated by a NN. What happens if we present an image of a novel class to the CNN



This is what you would expect, right?

Best would be all zero (not possible due to softmax) Traditional Deep NN tend to be over-confident...

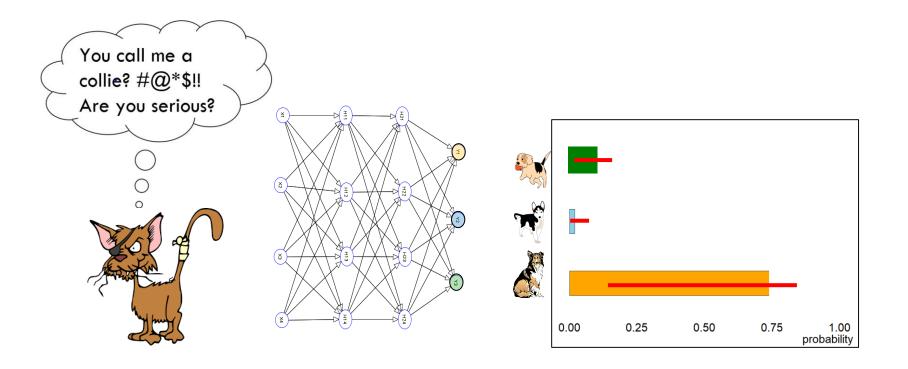


This is what you get!

1.0

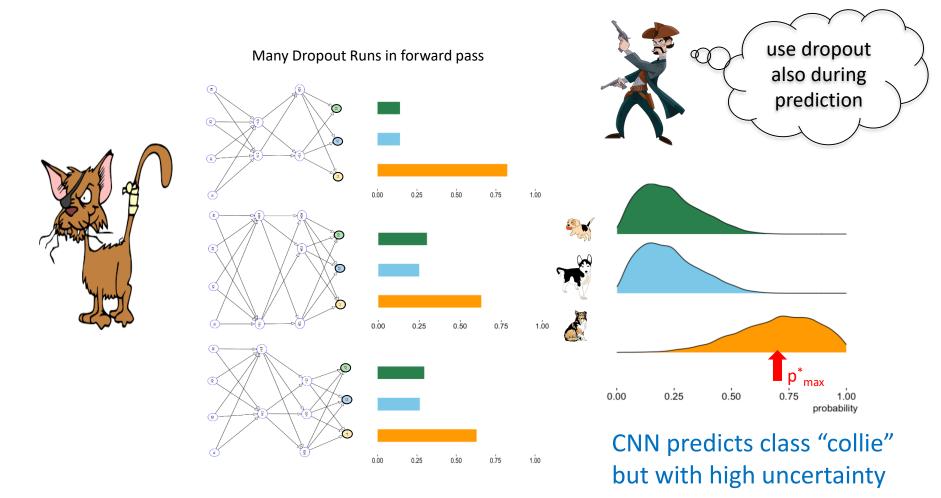
Remedy?: Bayesian Approaches to DL

The epistemic (parameter) uncertainty is missing



We need some error bars!

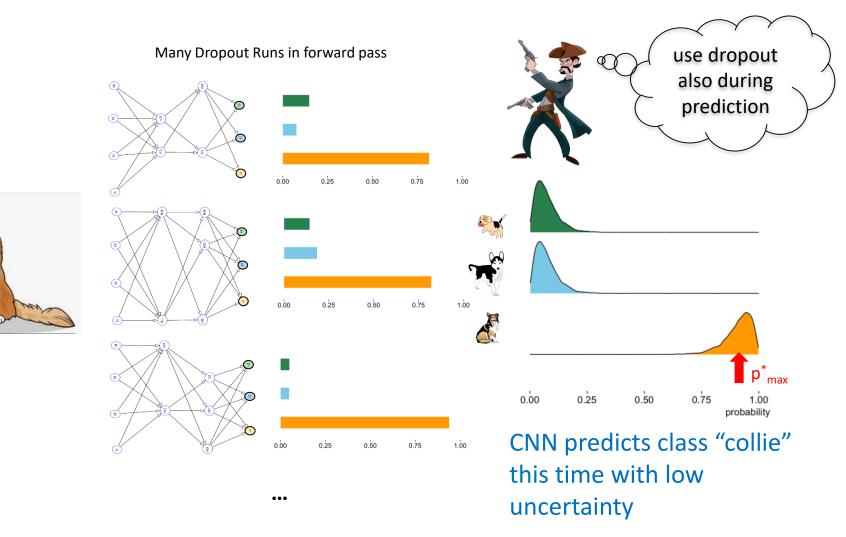
MC probability prediction



...

Remark: Mean of marginal give components of mean in multivariate distribution.

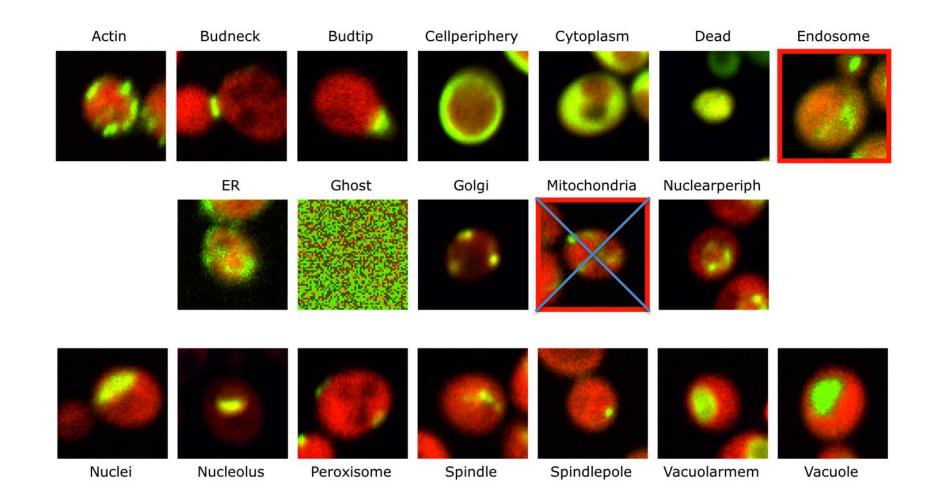
MC probability prediction provides epistimic uncertainty



Remark: Mean of marginal give components of mean in multivariate distribution.

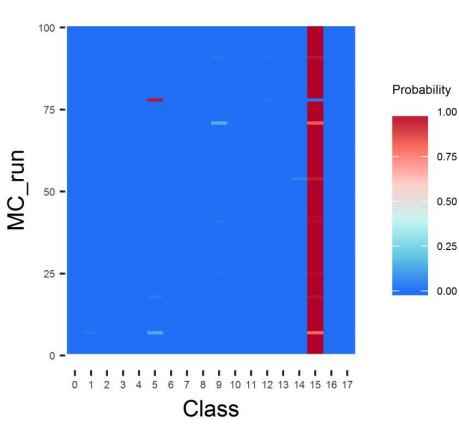
Novelty detection via epistemic uncertainty

Experiment with novel classes in test set



Classifying images of known and unknown phenotype

100 MC predictions for an image with known phenotype 15

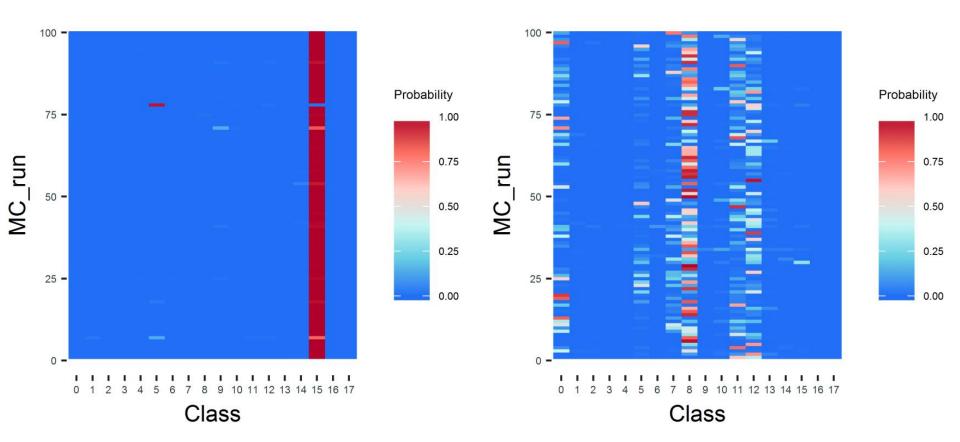


Classifying images of known and unknown phenotype

Known 100 MC predictions for an image with known phenotype 15

UnKnown

100 MC predictions for an image with an unknown phenotype



How to quantify the spread of a MC* probability distribution

The center of mass quatifies the predicted probablilty

 \mathbf{p}^{*}_{\max}

The spread quantifies in addition the uncertainty of the predicted probability

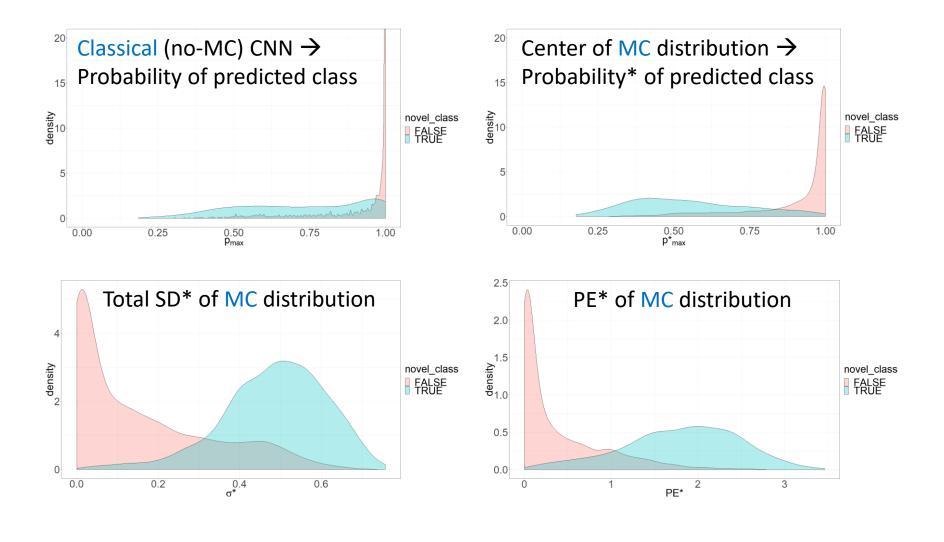
 σ^{\ast} total standard deviation

PE^{*} entropy,

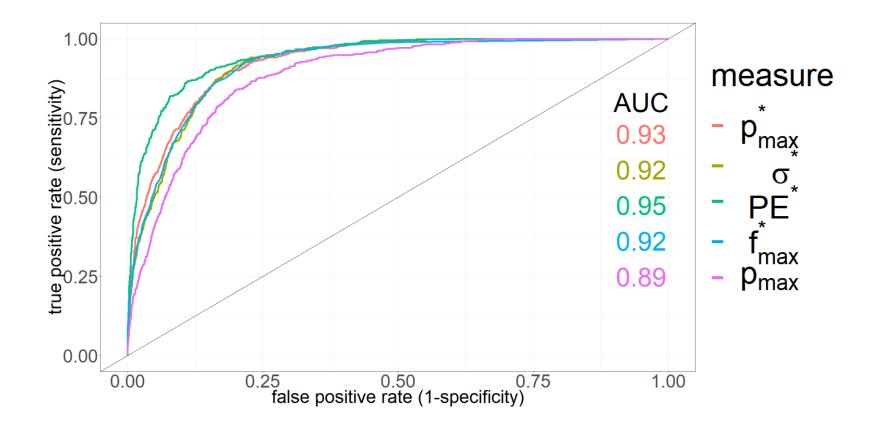
MI^{*} mutual information

VR* variation ratio

Experiments with images of known and unknown phenotype

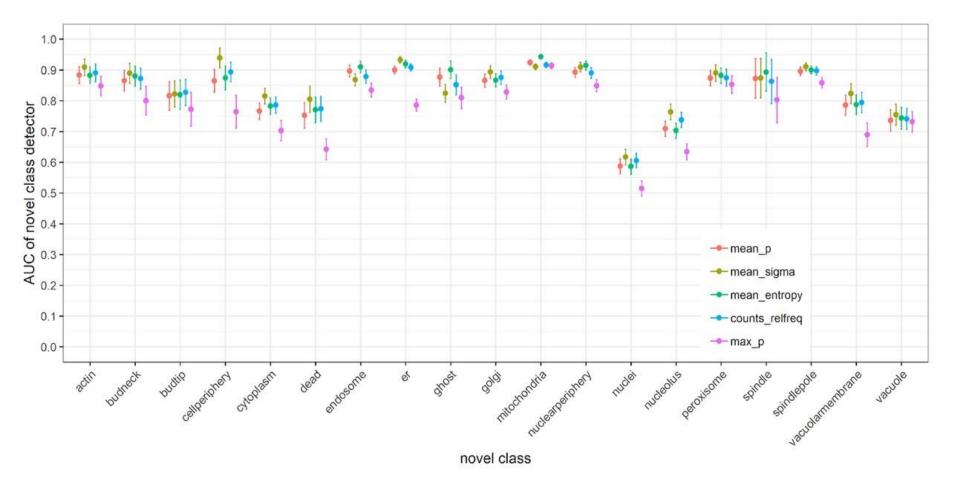


Experiments with images of known and unknown phenotype



All MC Dropout based appoaches are superior compared to the non-MC approach.

Experiments with images of known and unknown phenotype



In all cases the Bayesian epistemic uncertainty measures are better suitable to identify novel classes than tradition point estimates of the class probability.

Summary

- → A probabilistic NN fits a whole conditional outcome distribution (CPD)
- → We need to choose a parametric model for this CPD (e.g. a Gaussian for regression)
- \rightarrow We use the ML or Bayes to estimate the parameters of the CPD
- \rightarrow We use Bayes methods to estimate the uncertainty of the parameter values
- \rightarrow Aleatoric uncertainty is the data-inherent variability captured by the CPD
- \rightarrow Epistemic uncertainty is the uncertainty about the parameter values
- → Epistemic uncertainty can be used for novelty detection