
How to capture uncertainties with 

Neural Networks

A high level intro of probabilistic deep learning models
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Probabilistic Deep Learning is done in team work

2

Lisa Herzog

The topic was started 2017 with Elvis and Oliver at ZHAW and with Lisa at UZH 
and since then a lot is going on…



Outline

• Why are traditional neural network models “not probabilistic”?

• How can a NN model capture the data inherent variation?

 spoiler: by modeling a parametric conditional probability distribution (CPD)

• How to capture the uncertainty of the parameters that fix the CPD?

 spoiler: use Bayesian methods to get a distribution of plausible parameter values

• Aleatoric and epistemic uncertainty: The new buzzwords in the field

• Using epistemic uncertainty to identify novel classes in a real world 

classification task.
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Probabilistic Neural Networks

for simple regression



Can we predict the blood pressure from the age of a woman?
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People say that age is just a state of mind. 
I say it's more about the state of your body.

Geoffrey Parfitt

The sbp (systolic blood pressure) 
tend to increase with age. 

Hypothesis: Knowing the age of a woman helps us to predict the blood pressure.



Simple regression via a NN: no probabilistic model in mind
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i( )= +biy x a x



How to express uncertainty in statistics or machine learning?

• Probability is the language of uncertainty

• Probability distributions are the tool to quantify uncertainties
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CPD

Conditional Probability 

Distribution
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Fitting a probabilistic model allows to capture variations
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For each age (x-position) we have fitted a whole distribution of possible sbp values 
(y-values or response values – here systolic blood pressure).

Assume constant variance



Simple linear regression models the mx-parameter of N(mx,s
2)

10

2=(Y|X ) ~ N( , )   
ii xX iY sm

 2

0 1 i1y =  +   ~N 0,  , ii ix  s  

Traditional view 
with focus on means and residuals:

Slightly changed view 
with focus on conditional distributions:

We model the 𝝁𝑥𝑖-parameter of the CPD:

i= +b
ix a xm 

We model the expected value:

i= +b
ix a xm 

Conditional Probability Distribution (CPD)



Bird view on a probabilistic prediction model
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Input X Parameter for CPD

Input Artificial Intelligence ;-) Outcome distribution

ixm ixs𝑥𝑖



Using a neural network for simple linear regression

12

Input: agei of woman i

age

2sbp ~ N( , )   
ii ioutm s

   iout sbp

Input Artificial Intelligence ;-) Outcome distribution

i= +b
ii xout a xm 



Fitting the CPD parameter 

via Maximum Likelihood
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How to find the weights in the NN that yield good m-estimates?

Maximum Likelihood principle:
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Few code lines to fit the model
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As machine learner we are interested in the outcome prediction, not in the parameter values!



How to do linear regression with non-constant variance?
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Idea 1: Transform data so that variance is stable.

Idea 2: Fit a conditional probability distribution where both parameters (m, s2) depend on x.



How to do linear regression with non-constant variance?
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How to find the weights in the NN that yield good m-estimates?

Maximum Likelihood principle:

19

 ML

1

= argmin | ,    
n

i i

i

f y x



w

w w

  2

x

2
2Y ~ N ,    

ii ix

outeoutm s 

gradient descent

ˆ ˆˆ ˆ, , , a b c d

2

1=  

i

i

i i

out

x

x u

e

o t

s

m



𝑜𝑢𝑡1 ± 2 ⋅ 𝑒𝑜𝑢𝑡2
3 lines are plotted 



Outcome CPD is given by its parameter values

20Credits for animated gif: https://crumplab.github.io/statistics/gifs.html

2=(Y|X ) ~ N( , )   
ii ixX xiY sm

In traditional linear regression we only model the m-parameter  of the CPD 
as dependent on x and assume that the variance s2 does not depend on x.
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https://crumplab.github.io/statistics/gifs.html


Lets use the same NN architecture for a different data set
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What is going wrong? Without hidden layer 𝑜𝑢𝑡2 is a linear function of x 
 Sigma is a monotone function of x!
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NN architecture for a non-monotone relation of input and variance
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2=(Y|X ) ~ N( , )   
ii ixX xiY sm

NN architecture to fit non-linear heteroscatic data
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Parameter uncertainty 

via Bayesian approach



Recap: Bayesian models have distributions over their parameter
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Frequentist’s vs Bayesian’s answer when asked to do prediction
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Bayesian framework

• In Bayesian Modeling we define a prior distribution

over the parameter W:  𝑊𝑖~𝑁(0, 𝐼) defining p(wi)

• For regression NN we have the likelihood:

• Given a dataset X, Y we then look for the 

posteriori distribution capturing the most probable 

model parameter given the observed data
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Approximate Bayesian NN by variational inference 

29

Oliver, Elvis and I plan to give additional BBSs on the theory and frameworks of Bayesian DL models.
There was a BBS on Dropout as Bayesian Approximation method: https://tensorchiefs.github.io/bbs/files/dropouts-brownbag.pdf
*Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning https://arxiv.org/abs/1506.02142

TFp

 We should sample from 
weight distribution during 
test time 

MC Dropout
Randomly drop 
nodes in each run
 Ususally done 
during training

p1 p2 p3

1out 2out

https://tensorchiefs.github.io/bbs/files/dropouts-brownbag.pdf


Bayesian NN provide uncertainty on the parameter values
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To indicate the uncertainty about the 𝜇𝑥𝑖
we plot here a curve for 𝑚𝑒𝑎𝑛𝑜𝑢𝑡1𝑥

and 

two curves for 𝑚𝑒𝑎𝑛𝑜𝑢𝑡1𝑥
± 2 ⋅ 𝑠𝑑𝑜𝑢𝑡1𝑥

We would expect higher uncertainty, if we 
have less data – here the uncertainty is 
incredible small – why?
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b
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2outc

d

There is no hidden layer  linear fit over 
whole range, we can use all points to 
estimate this line (only 2 df)!

Can be approximated by sampling 
realized by repeated predictions

𝑚𝑒𝑎𝑛𝑜𝑢𝑡1𝑥
± 2 ⋅ 𝑠𝑑𝑜𝑢𝑡1𝑥

3 lines are plotted 
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NN with hidden layers do not impose a linear model
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With 2 hidden layers (30,20)

Hidden layers
 no constrain that allow to
borrow infromatin from whole
range 𝑚𝑒𝑎𝑡𝑜𝑢𝑡1𝑥

needs to be 

estimated locally from few data
 large uncertaincy about 𝜇𝑥𝑖

𝑚𝑒𝑎𝑛𝑜𝑢𝑡1𝑥
± 2 ⋅ 𝑠𝑑𝑜𝑢𝑡1𝑥

Can be approximated by sampling 
realized by repeated predictions

 | , ( , , , )p x w a b c dm 

Predictive distribution

We concentrate on the uncertainty of m

𝑚𝑒𝑎𝑛𝑜𝑢𝑡1𝑥
± 2 ⋅ 𝑠𝑑𝑜𝑢𝑡1𝑥

3 lines are plotted 



Aleatoric uncertainty

&

Epistemic uncertainty
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Getting philosophical – Epistemology and Aleatoricism
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Epistemology is the branch of philosophy 

concerned with the theory of knowledge.

Aleatoricism is the incorporation of 

chance into the process of creation.

The word derives from the Greek word
epistēmē, meaning 'knowledge

The word derives from the Latin 
word alea, the rolling of dice.

https://en.wikipedia.org/wiki/Epistemology

roman die

Alea iacta est

https://en.wikipedia.org/wiki/Aleatoricism
https://en.wikipedia.org/wiki/Alea_iacta_est

https://en.wikipedia.org/wiki/Epistemology
https://en.wikipedia.org/wiki/Aleatoricism
https://en.wikipedia.org/wiki/Alea_iacta_est


A random experiment with two kinds of uncertainties
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• We pull a poker chip out of a bag with mixed poker chips (black or blue) and toss it

• Sometimes we get a black chip and sometimes a blue chip

• In 50% of the tosses we see the side with the emoji pic otherwise the backside

1) Pull a chip 2) Toss the chip Observe color and face of the chip

See http://www.stat.columbia.edu/~gelman/stuff_for_blog/ohagan.pdf

http://www.stat.columbia.edu/~gelman/stuff_for_blog/ohagan.pdf


A random experiment with two kinds of uncertainties
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• The uncertainties on the color and the face of the drawn and tossed chip are different

• w/o any knowledge we would assign a probability of 0.5 on both colors and faces

• By collecting data we gain knowledge about the color probability: epistemic

• The random tossing process gives always a 50% chance to both faces: aleatoric

1) Pull a chip 2) Toss the chip Observe color and face of the chip

See http://www.stat.columbia.edu/~gelman/stuff_for_blog/ohagan.pdf

http://www.stat.columbia.edu/~gelman/stuff_for_blog/ohagan.pdf


“Aleatoric” and “Epistemic” in probabilistic models

- my understanding
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«aleatoric uncertainty» = inherent data uncertainty

due to the stochastic process that generates the data

captured by the fitted parametric distribution (CPD)

 cannot be reduced by providing more training data

«epistemic uncertainty» = uncertainty about the parameter values

captured by CIs or predictive distributions

 can be reduced by providing more training data

Need to learn about the 
composition of the bag



Probabilistic Deep Learning

for image classification
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DL revolutionized the field of image classification

A “CNN” trained to 

classify dog breads Correct 

We fit a probabilistic model:
We got a CPD (multinomial) which captures the aleatoric variablility. 
The parameter (𝑝1, 𝑝2, 𝑝3) of the CPD are estimated by a NN.



What happens if we present an image of a novel class to the CNN

This is what you would expect, right?

Best would be all zero 

(not possible due to softmax)

A network trained to 

classify dog breads



Traditional Deep NN tend to be over-confident…

You call me a 

collie ? #@*$!! 

Are you serious?

This is what you get!

A network trained to 

classify dog breads Plain wrong

Remedy?: Bayesian Approaches to DL



The epistemic (parameter) uncertainty is missing
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We need some error bars!



MC probability prediction

CNN predicts class “collie” 
but with high uncertainty

Many Dropout Runs in forward pass use dropout 
also during 
prediction

…

Remark: Mean of marginal give components of mean in multivariate distribution.

p*
max



MC probability prediction provides epistimic uncertainty

Many Dropout Runs in forward pass

…

CNN predicts class “collie” 
this time with low 
uncertainty

use dropout 
also during 
prediction

Remark: Mean of marginal give components of mean in multivariate distribution.

p*
max



Novelty detection via 

epistemic uncertainty
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Experiment with novel classes in test set

46Dürr O, Murina E, Siegismund D, Tolkachev V, Steigele S, Sick B. Know when you don’t know, Assay Drug Dev Technol. 2018



Classifying images of known and unknown phenotype
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Known UnKnown

Classifying images of known and unknown phenotype



The center of mass quatifies the predicted probablilty

p*
max

The spread quantifies in addition the uncertainty of the predicted probability

σ* total standard deviation

PE* entropy, 

MI* mutual information

VR* variation ratio

49

How to quantify the spread of a MC* probability distribution
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Experiments with images of known and unknown phenotype

Classical (no-MC) CNN 
Probability of predicted class

Center of MC distribution 
Probability* of predicted class

Total SD* of MC distribution PE* of MC distribution



Experiments with images of known and unknown phenotype
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All MC Dropout based appoaches are superior compared to the non-MC approach. 



Experiments with images of known and unknown phenotype
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In all cases the Bayesian epistemic uncertainty measures are better suitable to 
identify novel classes than tradition point estimates of the class probability.



Summary
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 A probabilistic NN fits a whole conditional outcome distribution (CPD)

 We need to choose a parametric model for this CPD (e.g. a Gaussian for regression)

 We use the ML or Bayes to estimate the parameters of the CPD

 We use Bayes methods to estimate the uncertainty of the parameter values

 Aleatoric uncertainty is the data-inherent variability captured by the CPD

 Epistemic uncertainty is the uncertainty about the parameter values 

 Epistemic uncertainty can be used for novelty detection


