Datalab Seminar

Introduction to D3.js
Interactive Data Visualization in the Web Browser

Dr. Philipp Ackermann

Sample Code: http://github.engineering.zhaw.ch/VisualComputingLab/CGdemos

Data Visualization

• Converting raw data to a form that is viewable and understandable to humans
 – Transform the symbolic to the geometric
 – Make the obvious and the hidden/abstract observable

• Interactive exploration
 – Drill-down
 – Dynamic mapping

• Gaining insight by interactive exploration and dynamic simulation
 – Amplify cognition (by creating a mental image)
 – Visual thinking (high bandwidth, pattern recognition, ...)

© 2016 InIT/ZHAW

Visual Computing Lab
“A picture is worth more than a thousand words”
(An ancient Chinese proverb)

“Tell me and I will forget…
Show me and I may remember…
Involve me and I will understand.“
(Another ancient Chinese proverb)

→ Interactive information visualization is a great tool for fostering involvement and understanding

Data Visualization

• Information Visualization
 – Abstract representation
 – Discrete data

• Scientific Visualization
 – Artefacts with well-defined 2D/3D representation in reality
 – Continuous data (e.g., computational fluid dynamics, weather models)
InfoVis and Big Data / Open Data

- More and more data produced
- More and more open data
 - opendata.ch http://opendata.ch
- Importance of visualizing this data
- Narrative information visualization
- Data-driven journalism
 - Neue Zürcher Zeitung http://nzz.ch/data

D3.js

- A JavaScript library for creating data visualization
 - Transformation of data into interactive visualizations
 - A kind of clever "jQuery for SVG"
 - Developed by Mike Bostock
 (while @ Standford, now @ New York Times)
- Based on standard Web technology
 - HTML Hypertext Markup Language
 - CSS Cascading Style Sheets
 - JS JavaScript
 - SVG Scalable Vector Graphics
 - DOM The Document Object Model
D3.js Features

• Solves the fundamental problem of data visualisation
 – Creates SVG (or HTML) DOM elements
 – Manipulates the DOM with data
 – Supports differential data update

• Fast, simple and efficient

• Support for animations and transitions

• A lot of existing chart/graph layouts

• Modularity
 – Extensions with functions and plugins

• Active community support

Data in d3.js

• Data are arrays
 – Array of numbers
 – Array of objects
 – Array of arrays (matrix)
 – Use JavaScript’s built-in array methods
 array.{filter,map,sort,...}

• JSON
 – Embed JSON data
 – Loading JSON data

• Loading Comma-Separated Values (CSV)
• Loading XML data using XMLHttpRequest
Selection & Manipulation

• Selectors to simplify DOM access
 – Similar to jQuery (but not the same)
 • d3.selectAll("div")
 • Compared to jQuery: $("div")
 – Result is an array
    ```javascript
    d3.selectAll("circle");
    ```

• Method chaining
 – Shorter (and more readable) code
    ```javascript
    d3.selectAll("circle")
      .attr("cx", 20)
      .attr("cy", 15)
      .attr("r", 5)
      .style("fill", "red");
    ```

Data Binding

• Select elements and join with data
 – Pairs a data object and a visual element
    ```javascript
    var myData = [
      {x: 2.0, y: 9.4},
      {x: 3.0, y: 8.1},
      {x: 5.0, y: 8.4},
      {x: 8.0, y: 8.7},
      {x: 9.0, y: 9.2}
    ];
    ```

• Generation of visual elements
  ```javascript
  svg.selectAll("circle")
    .data(myData)
    .enter().append("circle")
    .attr("cx", x)
    .attr("cy", y)
    .attr("r", 5)
    .style("fill", "red");
  ```

• Set properties using functions of data
 – Attributes (and styles) control position and appearance
Data Binding

• Join cycle: **enter, update & exit**
 – Keeps track of new and old objects
 – Lets you animate differences between new & old data
 – Keeps existing layout stable

• **enter()**
 – Generate new visual element

• **update()**
 – Update values of existing elements

• **exit()**
 – Remove visual element
 – Can be done with transition

Scales

• Scales are functions that map from an input domain to an output range
 – Input is data-driven
 – Output range controls visual properties

• Scale types
 – Ordinal scale
 – Linear scale
 – Log scale
 – Power scale
 – Time range
 – Color categories

```javascript
var x = d3.scale.ordinal()
  .domain(['A', 'B', 'C', 'D'])
  .rangePoints([0, 720]);
x('B'); // 240
```
Scales

• Linear scale samples

```javascript
var s = d3.scale.linear().domain([0, 1]).range([-10, 10])
s(0) // -10
s(0.5) // 0

var cs = d3.scale.linear().domain([0, 1]).range(['white', 'red'])
cs(0) // '#ffffff'
cs(1) // '#ff0000'

var data = [31, 22, 50, 36, 80, 42];
var x = d3.scale.linear()
  .domain([20, d3.max(data)])
  .range([0, 120]);
```

Axes

• Labeling of scales
 – Create an axis for a given scale
    ```javascript
    var xAxis = d3.svg.axis()
      .scale(x)
      .orient("right");
    ```
 – Add the axis by creating a `<g>` group element
    ```javascript
    svg.append("g")
      .attr("class", "x axis")
      .call(xAxis);
    ```
 – Customize axis appearance via CSS and by Ticks
    ```javascript
    .axis path, .axis line {
      fill: none;
      stroke: #000;
      shape-rendering: crispEdges;
    }
    ```
Let’s Make a Bar Chart

• By generating HTML div elements

![Bar Chart with HTML DIVs](../Demos/d3js/A01_Bar_htmlDIVs.html)

• By generating SVG rect elements and axes

![Bar Chart Sample](../Demos/d3js/A02_Bar_chart.html)

Layouts

• Layouts do transform data to visual elements
 – They do not draw, they make the data uplift by generating, positioning, and sizing visual elements

• Predefined layouts
 – Bundle
 – Chord
 – Cluster
 – Force
 – Hierarchy
 – Histogram
 – Pack
 – Partition
 – Pie
 – Stack
 – Tree
 – Treemap
 – Treemap
 – World cloud
 – …

Let’s Make a Pie Chart

• By using a d3.js pie layout
 – d3.csv
 • Load and parse data
 – d3.scale.ordinal
 • Color encoding
 – d3.svg.arc
 • Generate arc elements
 – d3.layout.pie
 • Compute arc angles from data

Transitions and Interactions

• Make your charts change smoothly
 – Data changes become animated
 – Smooth movements
 – Fade-in / fade-out

• Add event handlers to generated SVG elements
 – On over → Tooltips
 – On click → Follow URL link
 – On dblclick → Drill-down
 – On drag → Move / rearrange
 – ...
Let’s Visualize a Network Graph

- Using directional force layout
 - Dynamic network layout
 - Nodes as circles
 - Links as curved arrows
 - Event handlers
 - Click
 - Dblclick
 - Drag
 - Transition
 - Node resizing

GeoGraphical Maps

- GeoJSON
 - Maps geographic data to SVG polygon elements
- TopoJSON
 - Borders are stitched together from segments called arcs
 - Arcs are shared by borders → compact data
- Many different geo projections in d3.geo.js available
Let’s Create a Swiss Map

• By using d3.topojson.js

Example: Visualize content from DB

• Cron job: PHP script to daily save value in DB
• PHP script to provide DB records as JSON
• HTML/D3.js code for data graphics
Example: Visualize content from DB

• PHP script to provide DB records as JSON

```php
<?php
include_once ('dbconfi.php');
$db = mysqli_connect($dbServer, $dbUser, $dbPW, $dbName);
$query = "SELECT * FROM imgstats WHERE 1";
$sqlResult = mysqli_query($db, $query);
$result = array();
$cnt = mysqli_num_rows($sqlResult);
while ($row = $sqlResult->fetch_assoc()) {
    $result[] = $row;
}
header('Content-type: application/json; charset=utf-8');
echo json_encode($result);
mysqli_close($db);
```
Student Project: eHealth Info Vis

• Interactive Web Graphics
 – Access to Open Data of public health information
 – Web-based information visualization based on D3.js
 – http://www.visualcomputinglab.ch/healthvis

Information Visualization Example

• Combine multiple & linked views
• Temporal filtering & animation
• Interactive legends

http://www.metason.net/artistnet/India_Arie.html
A Typical d3.js Application

- **Data Flow**
 - Import of raw data
 - Optional: Data pre processing
 - Data filtering
 - By user interaction
 - By animation (timer)
 - Visual mapping
 - Preparation for visualization
 - Chart-specific data arrays
 - Calculate scales and axes
 - Several parallel charts
 - Main chart
 - Side charts

Information Visualization Samples

- Try out great samples of Info Vis based on d3.js
Dive Deeper

• Learning by doing
 – Checkout d3.js Web site www.d3js.org
 – Take small steps
 – Learn from examples

• Study d3.js visualization samples
 – http://bl.ocks.org/mbostock
 – ...

Types of Data Visualization

<table>
<thead>
<tr>
<th>Data Graphics</th>
<th>Information Visualization</th>
<th>Narrative Visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>+ Information Architecture</td>
<td>+ Storytelling</td>
</tr>
<tr>
<td>Static Presentation</td>
<td>+ Interaction</td>
<td>+ Animation</td>
</tr>
</tbody>
</table>
Visual Data Mining

- Visual Data Mining
 - Use of visual tools for data exploration
- Interactive exploration
 - Interplay of human and machine intelligence
 - Interaction Loop
 - Machine processing
 - Visual pattern recognition
 - Best of both worlds
 - Machine speed
 - Human perception & interpretation

Recommended Reading

A Tour Through the Visualization Zoo

PDF: http://portal.acm.org/ft_gateway.cfm?id=1805128&type=pdf
HTML: http://queue.acm.org/detail.cfm?id=1805128
Recommended Reading

- Einstieg in die Visualisierung
 Wie man aus Daten Informationen macht
 [Image of book cover]

- Guide to Information Graphics
 The Dos & Don'ts of Presenting Data, Facts, and Figures
 [Image of book cover]