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With material from  

•Arthur Juliani’s and Brandon Amos’s blog posts 

• Ian Goodfellow, UC Berkeley COMPSCI 294 guest lecture 
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1. GENERATIVE MODELING 
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Probability distributions and density functions 

What does a pdf tell about a set of data? 
• Where to expect samples 

• …with which probability 

• Correlation/covariance of dimensions 

 

 

Č For data coming from some stochastic 

processes, the pdf tells everything there 

is to know about the data 

 

Č Allow for sampling data from the 

underlying distribution 

 

An example generative model 
• Recovering a known, parametric pdf:  

The univariate Gaussian 

Maximum likelihood 

estimate ὴὼ with 

parameters mean ‘ and 

standard deviation „ 

Given data points ὼ 

Assumption: ὼͯ ὴὼȠ— ὔὼȠ‘ȟ„ 

Terminology: its probability density function 

(pdf) is one way to describe a distribution. 

Source: Brandon Amos, «Image Completion with Deep 

Learning in TensorFlow», 2016, 

https://bamos.github.io/2016/08/09/deep-completion/ 

https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
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Pros and cons 

Flavors of generative models  
• Statistical models that directly model the pdf (e.g., GMM, hidden Markov model HMM) 

• Graphical models with latent variables (e.g., Boltzmann machines RBM/DBM, deep belief 

networks DBN) 

• Autoencoders 
 

Promises 
• Help learning about high-dimensional, complicated probability distributions (even if pdf 

isn´t represented explicitly) 

• Simulate possible futures for planning or simulated RL 

• Handle missing data (in particular, semi-supervised learning) 

• Some applications actually require generation (e.g. sound synthesis, identikit pictures, 

content reconstruction) 
 

Common drawbacks 
• Statistical models suffer severely from the curse of dimensionality 

• Approximations for intractable probabilistic computations during ML estimation 

• Unbacked assumptions (e.g., Gaussianity) and averaging e.g. in VAEs 
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2. GENERATIVE ADVERSARIAL NETS 
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Adversarial nets 
Bootstrapping implicit generative representations 

Train 2 models simultaneously [1] 
• G: Generator 

Ą learns to generate data  

• D: Discriminator 

Ą learns ὴὼ ὲέὸ ὦὩὭὲὫ ὫὩὲὩὶὥὸὩὨ 

 

 
 

 

 

 

 

Č Both models learn while competing 

Č The latent space Z serves as a source of variation to 

generate different data points 

Č Only D has access to real data 

 
[1] Schmidhuber, «Learning Factorial Codes by Predictability Minimization», 1992 

Sources: Goodfellow, «Generative Adversarial Networks (GANs)», guest lecture at UC Berkeley COMPSCI 

294, 2016-10-03, slide 15; http://www.dpkingma.com/sgvb_mnist_demo/demo.html 

http://www.dpkingma.com/sgvb_mnist_demo/demo.html
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No weenies allowed! How SpongeBob helps.. 
éto understand bootstrapping untrained (G)enerator & (D)iscriminator 

Bouncer (D) decides on 

entry: for tough guys only 

SpongeBob (G) wants to 

appear tough to be admitted 

Untrained D focuses on 

obvious things to discriminate: 

e.g., physical strength 

So G tries to imitate that, but 

fails 

By observation, G discovers 

more detailed features of 

tough guys: e.g., fighting 

So G learns to imitate that 

as well 
…and eventually tricks D. 

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016,  

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk 

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39.gcoxuaruk
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GAN model formulation (improved) 
Deep convolutional generative adversarial nets [2] 

 

 

 

 

 

 

 

 
 

 

Implement both G and D as deep convnets (DCGAN) 
• No pooling, only fractional-strided convolutions (G) and strided convolutions (D) 

• Apply batchnorm in both 

• No fully connected hidden layers for deeper architectures 

• ReLU activation in G (output layer: tanh) 

• LeakyReLU activation in D (all layers) 
 
[2] Radford, Metz, Chintala, «Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks», 2016 
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Strided what? 
Convolutional arithmetic [3] 

 

Fractionally-strided conv. in G 
• Performing transposed convolution 

• Used to «up-sample» from input (blue) to 

output (green) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strided convolutions in D 
• Stride (stepsize) = 2 

• Used instead of (max) pooling [4] 

[3] Dumoulin, Visin, «A guide to convolution arithmetic for deep learning », 2016 

[4] Springenberg, Dosovitsiy, Brox, Riedmiller, «Striving for simplicity: The all convolutional net», 2014 
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Model training [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014 

Usually 

Ὧ ρ  
(or ½) 

average 
log likelihood of ὼ 
being real Ą π 

log likelihood Ὃᾀ  

not being real Ą π 

change  —╓ to maximize 

change  —╖ to minimize 

see above 
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Visualizing the training process 

Observations 
• G starts with producing random noise 

• Quickly arrives at what seems to be  

pencil strokes 

• It takes a while for the network to  

produce different images for different ᾀ 
• It takes nearly to the end before the  

synthesized images per ᾀ stabilize at  

certain digits 

 

 

 

 

 

Č Possible improvements? 

6x6 samples Ὃᾀ from fixed ᾀ’s every 2 mini batches (for 50k 
iterations). See https://dublin.zhaw.ch/~stdm/?p=400. 

https://dublin.zhaw.ch/~stdm/?p=400
https://dublin.zhaw.ch/~stdm/?p=400
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Features of (DC)GANs 

Learn semantically meaningful latent space 
• Examples of ◑-space vector arithmetic from  

DCGAN paper [2]: 

 
Training is not guaranteed to converge 
• Ὀ and Ὃ play a game-theoretic game against 

each other (in terms of slide 12: minimax) 

• Gradient descent isnôt meant to find the  

corresponding Nash Equilibria (saddle point of  

joint loss function, corresponding to minima of both  

player’s costs)  [6] 

• How to sync Dôs and Gôs training is experimental (if G is trained too much, it may collapse all of 

z’s variety to a single convincing output) 

• The improvements of [2] and [7] make them stable enough for first practical applications 

• Research on adversarial training of neural networks is still in its infancy 

 
[6] Goodfellow, Courville, Bengio, «Deep Learning», ch. 20.10.4, 2016 

[7] Salimans, Goodfellow, Zaremba, Cheung, «Improved Techniques for Training GANs», 2016 

 

The ᾀ vectors in the left 3 columns have been averaged, then arithmetic has been 

performed. The middle image on the right is the output of ὋὶὩίόὰὸὭὲὫ ᾀ ὺὩὧὸέὶ. The 

other 8 pictures are the result of adding noise to the resulting ᾀ vector (showing that 

smooth transitions in input space result in smooth transitions in output space). 
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Based on material from Brandon Amos, «Image Completion with Deep Learning in 

TensorFlow», 2016 

 

 

 

 

 

 

 

 
 

 
https://bamos.github.io/2016/08/09/deep-completion/ 

3. USE CASE: IMAGE INPAINTING 

https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
https://bamos.github.io/2016/08/09/deep-completion/
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GAN use cases 

Research is just starting to gain momentum; we expect more to see in the future 
 

• Generate images from text 
Reed et al., «Generative Adversarial Text to Image Synthesis», 2016 

 

 

 

• Segment images into semantically meaningful parts 
Luc et al., «Semantic Segmentation using Adversarial  

Networks», 2016 

 

 

 

• Complete missing parts in images 
Yeh et al., «Semantic Image Inpainting with Perceptual and 

Contextual Losses», 2016 

Č see next slides 
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Image inpainting as a sampling problem 
éapproached by machine learning 

Training: Regard images as samples of some underlying probability distribution ▬╖ 
1. Learn to represent this distribution using a GAN setup (G and D) 

 

 

--  

 

 

Testing: Draw a suitable sample from ὴ by… 

1. Fixing parameters ◙╖ and ɡ  of G and D, respectively 

2. Finding input ◑ to G such that 'ᾀǶ fits two constraints: 
a) Contextual: Output has to match the known parts of the image that needs inpainting 

b) Perceptual: Output has to look generally «real» according to D’s judgment 

3. …by using gradient-based optimization on ◑ 

Powerful idea: application of trained ML 

model may again involve optimization! 
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Reconstruction formulation 

Given 
• Uncomplete/corrupted image ὼ  

• Binary mask ὓ (same size asὼ , π for missing/corrupted pixels) 

• Generator network Ὃ , discriminator network Ὀ  

 

 

Problem 
• Find ᾀǶ such that ὼ ὓἄὼ ρ ὓἄὋᾀǶ)  

(ἄ is the element-wise product of two matrices) 

 

 

Solution 
• Define contextual and perceptual loss as follows: 
ὒ ᾀ ὓἄὋᾀ ὓἄὼ  (distance between known parts of image and reconstruction) 

ὒ ᾀ ÌÏÇ ρ ὈὋᾀ    (as before: log-likelihood of Ὃᾀ being real according to D) 

ὒᾀ ὒ ᾀ ‗ẗὒ  (combined loss) 
 

Č Optimize ᾀǶ ÁÒÇ ÍÉÎὒᾀ 
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Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

See it move: https://github.com/bamos/dcgan-completion.tensorflow 

https://github.com/bamos/dcgan-completion.tensorflow
https://github.com/bamos/dcgan-completion.tensorflow
https://github.com/bamos/dcgan-completion.tensorflow
https://github.com/bamos/dcgan-completion.tensorflow
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Review 

• Generative models capture important aspects of the data-generating 

distribution 

• They can be used to sample from even if the pdf isnôt modeled explicitly 

 

 

• GANs have been shown to produce realistic output on a wide class of (still 

smallish) image, audio and text generation tasks 

 

• Finding Nash equilibria in high-dimensional, continuous, non-convex games 

is an important open research problem 

 

 

• Image inpainting works by optimizing the output of a fully trained 

generator to fit the given context & realism criteria, using again gradient 

descent 

Č Applying machine learned models might involve optimization (~training) steps again 

Č This is in line with human learning: Once trained to draw, hand-copying  

     a painting involves “optimization” on the part of the painter 

 


