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1) CNNs for Scalable Fault Detection: a
Wind Turbine Use Case (Lilach,
29.4.2021).

2) Transfer Learning Approaches for
Fault Detection (Jannik, 6.5.2021).
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« Anomaly detection: detect deviations from a familiar pattern = anomaly score.

 Fault detection: detect early patterns of deviations from normal behavior of
machines = Health Index.

« Common machine data; multivariate time series.
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Complexities

« Anomalies are rare = class imbalance i swez || H Anomaty

- Unknown fault nature (time dependence, distribution) RIS e S v G e ) WO

» Diversity of anomaly classes/types (abrupt, slow degradations, point anomalies,
different severity)

power

Challenges

» Thershold setting = False positives vs. Missed detections.
* Model evaluation.

» Detection + Explanation => diagnostics.

* Noise resilience under diverse operating conditions.
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Need labeled faults Few clear outliers
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Trends In Fault Detection

Academic Research

Method driven = classification mainly

Encode ts data as images = limited
applicability.

RUL predictions (simulated data)

Transfer Learning/ Domain Adaptation

Hybrid models (physics + ML)
Interpretability («XAl»)

Health Indicator
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Trends In Fault Detection

Academic Research

Method driven = classification mainly

Encode ts data as images = limited
applicability.

RUL predictions (simulated data)

Transfer Learning/ Domain Adaptation

Hybrid models (physics + ML)
Interpretability («XAl»)
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Practical R&D

Use existing data (little, no faults, low freq)

How to set robust thresholds?

How to evaluate algorithms without labels?

How to scale up algorithms (data selection,
run times)?

Robustness under changing conditions.

Diverse operating conditions (TL/DA?)
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Zurich University

of Applied Sciences {H)
b s Nispera
a Engineering renewable energy data solutions

Data intelligence platform for e ™
_ renewable energy assets
Smart Maintenance Team
> 7 GW of monitored assets
\ ( / \ \
Schweizerische Eidgenossenschaft
g Confédération suisse
e Electricity provider of
Swiss Confederation Canton Of ZUI’ICh
Innosuisse — Swiss Innovation Agency \ /
G /

Intelligent fault detection and diagnosis algorithms for wind turbines
https://nispera.com/solutions/predictive-maintenance
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Added Value for Park Operators

Zurich University
of Applied Sciences

Designated Condition
Monitoring Systems
are too expensive

Data acquisition

Original Equipment Manufacturer

(OEM):

= Designated Condition Monitoring
hardware.

= High frequency data.

= Use for design improvement.
Not accessible for operators/owners.
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Added Value for Park Operators zh s

Cost effective solution: 10-minute averaged
= Use available data. SCADA data is
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High performance fault detection with existing data aw

10-minute averaged
SCADA data is
already stored.

Practical solution:
= Detect early

= Accurately

= Diverse Fault types

= Transferable

= Scalable enerator Bearings

y Gearbox Planet Bearings

Main Shaft Bearings |
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Semi-supervised Anomaly Detection

v'Faults are rare and unique =» use only healthy data for training, detect anomalies online.

v'Fault localization =» regression

Zircher Fachhochschie Lilach Goren Huber - ZHAW
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Single Output CNN

v’ Learn time dependent patterns = CNN Commonly used:
Multi Layer Perceptron
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Multi-Output CNN (CNNm)

v' Diverse fault types =» multi-target regression
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Model Evaluation and Selection
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Regression models: metric = prediction error MSE.

AD: training on healthy data =» we can only evaluate prediction error and minimize it.

Problem: model selection. reducing the error on the healthy data does not imply increased error for fault data.

Example: we can select a predictor with perfect correlation to the target. We then have good predictions also during abnormalities.

Without nacelle T as input With nacelle T as input
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=>» select a minimal set of «exogenic» predictors.
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Over fitting
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prediction

training
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Detection of Abrupt Faults
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Residuals and Health Index: Abrupt Faults
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Health Indices with Multi-output CNN
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(a) Generator bearing (b) stator phase (c) gearbox bearing (d) gearbox oil (e) slip ring

(f) rotor spinner (g) grid transformer (h) controller top (i) controller hub (j) hydraulic oil.
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Results
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Faulty
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Both CNNs perform better than the MLP
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Model Comparison: Slow Degradation

)
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v"CNNm detects even earlier than CNN.
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Results

Sensitivity Analysis: Slow Degradation
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Ulmer, Markus, et al. "Early fault detection based on wind turbine scada data using
convolutional neural networks." 5th European Conference of the Prognostics and

Health Management Society, 2020. Slgmflcance Score [-Iogloa]

The CNNm is more robust against threshold selection
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Scaling up fault detection algorithms

Motivation for transfer
learning
= New turbines/ farms.

= New operational conditions.
= Speed up fleet-wide detection.
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Cross-Turbine Training Scheme aw
Goal: predict faults on turbine . /z\ /é
Problem: only data from 7.
| !
Source Turbine S Target Turbine

Available healthy data: 9 Months Available healthy data:
Simple Solution:

* Train CNN on 9V from turbine S.

* Predict y, for new data from

* Train a regression model y; ~ y, + X; on from

« Adapt new predictions on | using the same regression.
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Cross-Turbine Training Scheme
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Cross-turbine training scheme allows early fault detection with scarce data
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Results

Source domain comparison: abrupt fault
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Ulmer, Markus, et al. "Cross-turbine training of convolutional neural networks for
SCADA-based fault detection in wind turbines." Annual Conference of the PHM 9 BO (MBT)
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= Fault detection of rare and diverse fault types = semi-supervised AD
= Easy fault localization =» regression

= Robust capturing of time depentent patterns = CNNSs

= Scalable multi-component detection =» multi-output CNN.

= Robust threshold setting = use error distributions for anomaly scores.
= Model evaluation = MSE not enough.

= Scarce data = TL approaches.

= Preliminary: LR-based cross turbine training scheme with promising results.
= Next week: overview of TL approaches, comparison of selected solutions.
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