
 
 
 
Oliver Dürr 
 
Datalab-Lunch Seminar Series 
Winterthur, 23 Nov, 2016 
 
Code: github.com/oduerr/dl_tutorial/  

TensorFlow for Deep Learning 

4 



Leftovers 

•  Notes and things I forgot 
–  The Mandelbrot example now also includes loop (see Control_Flow/Madelbrot) 
–  Extremely nice tool (DevDocs includes TF and many other useful libs) 

•  Today it’s about using Tensorflow for deep learning. No theory of Deep 
Learning! 

 
 



Outline 

•  Short Recap 

•  How to build networks 
–  Scoping 

•  Using existing models 
–  Accessing ops and tensors in existing networks 
–  Fine-tuning adopt existing networks to a new task 

•  Debugging 
–  Tensorboard 
–  tf.Print() 

 
 



Most important thing from last time: compute graph 

•  Edges are arrays with n indices (tensors of order n) 
•  Nodes are operations (ops) 
•  These tensors flow hence the name  
•  To steps process (allows e.g. for symbolic differentiation)  

–  Build graph in a abstract fashion 
–  Put values in and out with feeds and fetches  

Photo credit TensorFlow documentation 



The Tensors Flowing 

Photo credit TensorFlow documentation 



Most important thing from last time: feeds and fetches 

res = sess.run(f, feed_dict={b:data[:,0]})

Fetch  
f (symbolic) 

fetch  
(the numeric value) symbolic values 

Photo credit TensorFlow documentation 



Libraries on top of TensorFlow 

•  There are lots of libraries on top of TensorFlow. Some of them are in the 
tensorflow.contrib package and are thus installed with TensorFlow 
–  TF-Slim 

•  nice to build networks 
•  contains many pre-trained networks 

–  skflow 
•  scikit learn like interface (not used so far) 

–  TF Learn (inside contrib)  
•  I did not use it so far 

•  Notable exception is the TFLearn (http://tflearn.org/) library (outside TF) 
•  Easy training   
•  Can handle hdf5 files 
•  Includes data augmentation 

 
Since they are all build around TF they can be combined.  Other libraries 
using TF as engine (e.g. Keras no experience so far) 



Building Blocks for Networks 

Photo credit CS231n 



Example Network VGG16 

(#BS, 224, 224, 3) 

(#BS, 1, 1, 1000) 

Only conv no fc layers  

Lot’s of repeated 
units 

Only	two	type	of	
stones	needed!	
ConvoluBons	and	
Maxpooling	



Name scopes  

•  Name like vgg16/conv1/conv1_1 allow to group complex networks 



Creation of name scopes 

You could simply name ops like ‘conv1/Conv2d’ . However, there is a nice 
mechanism to do so: 
 
 
 
 
 
 
 
 
 
With this mechanism it’s also easy possible to create a network out of simple 
building blocks… 

https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/Building_Nice_Networks/Scoping.ipynb 



Variable scopes as building blocks 

tf.reset_default_graph()

def conv_layer(net, shape, scope):

    with tf.variable_scope(scope) as v_scope:

        kernel = tf.Variable(tf.truncated_normal …

        conv = tf.nn.conv2d(net, kernel, [1, 1, 1, 1], padding='SAME')

        biases = tf.Variable(tf.constant(0.0, shape=[shape[3]]… 

    out = tf.nn.bias_add(conv, biases)

        return tf.nn.relu(out, name=scope)

net = tf.placeholder(dtype='float32', shape=(None, 64, 64, 3), 
name='Input')

net = conv_layer(net, [3, 3, 3, 64], 'conv1')

net = conv_layer(net, [3, 3, 64, 128], 'conv2')

net = conv_layer(net, [3, 3, 128, 128], 'conv3')

writer = tf.train.SummaryWriter("/tmp/dumm/scoping", 
tf.get_default_graph(), 'graph.pbtxt') 

https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/Building_Nice_Networks/Scoping.ipynb 



Variable scopes to share variables 

•  Variable scoping is a mechanism to share the variables of (possible large) parts of a 
network, without the need to pass references.  

•  These shared variables are needed for example in Siamese Networks.  

•  Two function with go together: 
 

–  tf.variable_scope()  created the name-space or better context manager 
–  tf.get_variable()  gets or newly creates variables in the name scope 
–  Here we do not use tf.Variable() 

•  See also  
–  https://www.tensorflow.org/versions/master/how_tos/variable_scope/index.html 
–  http://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow 

 
 



Variable scoping (new variables) 

 
 

Variable scoping (shared variables) 

https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/Building_Nice_Networks/Scoping.ipynb 



Notebook and sharing weights 

Let’s have a look at the notebook. In this notebook it is also explained how to 
share variables (e.g. for Siamese Networks) with variable scopes and 
tf.get_variable('v', shape=(1,10)). 
 
https://github.com/oduerr/dl_tutorial/blob/master/
tensorflow/Building_Nice_Networks/Scoping.ipynb 
 
 



Using pre-trained networks 



Checkpointing (saving) 

... #ß Definition of the network
epochs = 1000

saver = tf.train.Saver()

with tf.Session() as sess:

    sess.run(init_op)

    for e in range(5): 

        sess.run(train_op, feed_dict={x:x_data, y:y_data})

    res = sess.run([loss, a, b], feed_dict={x:x_data, y:y_data})

    print(res)

    save_path = saver.save(sess, "checkpoints/model.ckpt")

    print("Model saved in file: %s" % save_path)

print('Finished all’)

https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/linear_regression/03_checkpointing.ipynb 



Checkpointing (restoring) 

... #ß The network needs to be defined. It is not stored.

saver = tf.train.Saver()

with tf.Session() as sess:

    saver.restore(sess, "checkpoints/model.ckpt")

    res = sess.run([loss, a, b], feed_dict={x:x_data, y:y_data})

    print(res)

 

https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/LinearRegression/03_checkpointing.ipynb 

Weights and definition of the graph 
 
Checkpointing just stores the weights. The definition of the network has to be 
defined or stored separately. If you what to do it all in one, you have to transform 
the weights in constants and save the network. This is referred to freezing the 
graph. 



Using existing models [show] 

•  The notebook:  Using_Trained_Nets* shows how to access trained 
networks  

 

feed = tf.Graph.get_tensor_by_name(tf.get_default_graph(), 'Placeholder:0')
fetch = tf.Graph.get_tensor_by_name(tf.get_default_graph(), 'vgg_16/fc8/BiasAdd:0')
res = sess.run(fetch, feed_dict={feed:feed_vals})

This	feeding	and	fetching	is	extremely	useful	for	debugging,	see	later)		

*https://github.com/oduerr/dl_tutorial/tree/master/tensorflow/stored_models 



Transfer Learning [show] 

*https://github.com/oduerr/dl_tutorial/tree/master/tensorflow/stored_models 



Debugging 



Debugging: run part of the graph feed and fetch 

Slide taken from: https://wookayin.github.io/TensorflowKR-2016-talk-debugging/#27   



Designing graphs for debugging 

•  You want to access the graph at different entry points 

•  You can get every Tensor in the graph (to feed or fetch)   
–  E.g. tf.Graph.get_tensor_by_name(tf.get_default_graph(), 'Placeholder:0’)

•  However, it is much nicer to give the user handles to the tensors  

•  There are good and bad ways of doing so: 



Designing graphs for debugging: bad 

Slide taken from: https://wookayin.github.io/TensorflowKR-2016-talk-debugging/#27   

def alexnet(x):
    assert x.get_shape().as_list() == [224, 224, 3]
    conv1 = conv_2d(x, 96, 11, strides=4, activation='relu')
    pool1 = max_pool_2d(conv1, 3, strides=2)
    conv2 = conv_2d(pool1, 256, 5, activation='relu')
    pool2 = max_pool_2d(conv2, 3, strides=2)
    conv3 = conv_2d(pool2, 384, 3, activation='relu')
    conv4 = conv_2d(conv3, 384, 3, activation='relu')

    conv5 = conv_2d(conv4, 256, 3, activation='relu')
    pool5 = max_pool_2d(conv5, 3, strides=2)
    fc6 = fully_connected(pool5, 4096, activation='relu')
    fc7 = fully_connected(fc6, 4096, activation='relu')
    output = fully_connected(fc7, 1000, activation='softmax')
    return conv1, pool1, conv2, pool2, conv3, conv4, conv5, pool5, fc6, fc7

# At construction time 
conv1, conv2, conv3, conv4, conv5, fc6, fc7, output = alexnet(images)  # ?!

# During the training loop
_, loss_, conv1_, conv2_, conv3_, conv4_, conv5_, fc6_, fc7_ = session.run(
        [train_op, loss, conv1, conv2, conv3, conv4, conv5, fc6, fc7],
        feed_dict = {...})

Quite messy code!  



Designing graphs for debugging: good with dictionary 

Slide taken from: https://wookayin.github.io/TensorflowKR-2016-talk-debugging/#27   

def alexnet(x, net={}):
    assert x.get_shape().as_list() == [224, 224, 3]
    net['conv1'] = conv_2d(x, 96, 11, strides=4, activation='relu')
    net['pool1'] = max_pool_2d(net['conv1'], 3, strides=2)
    net['conv2'] = conv_2d(net['pool1'], 256, 5, activation='relu')
    net['pool2'] = max_pool_2d(net['conv2'], 3, strides=2)
    net['conv3'] = conv_2d(net['pool2'], 384, 3, activation='relu')
    net['conv4'] = conv_2d(net['conv3'], 384, 3, activation='relu')
    net['conv5'] = conv_2d(net['conv4'], 256, 3, activation='relu')
    net['pool5'] = max_pool_2d(net['conv5'], 3, strides=2)
    net['fc6'] = fully_connected(net['pool5'], 4096, activation='relu')
    net['fc7'] = fully_connected(net['fc6'], 4096, activation='relu')
    net['output'] = fully_connected(net['fc7'], 1000, activation='softmax')
    return net['output']

net = {}
output = alexnet(images, net)
# access intermediate layers like net['conv5'], net['fc7'], etc.

Better 



Designing graphs for debugging: good with class 

Slide taken from: https://wookayin.github.io/TensorflowKR-2016-talk-debugging/#27   

class AlexNetModel():
    # ...
    def build_model(self, x):
        assert x.get_shape().as_list() == [224, 224, 3]
        self.conv1 = conv_2d(x, 96, 11, strides=4, activation='relu')
        self.pool1 = max_pool_2d(self.conv1, 3, strides=2)
        self.conv2 = conv_2d(self.pool1, 256, 5, activation='relu')
        self.pool2 = max_pool_2d(self.conv2, 3, strides=2)
        self.conv3 = conv_2d(self.pool2, 384, 3, activation='relu')
        self.conv4 = conv_2d(self.conv3, 384, 3, activation='relu')
        self.conv5 = conv_2d(self.conv4, 256, 3, activation='relu')
        self.pool5 = max_pool_2d(self.conv5, 3, strides=2)
        self.fc6 = fully_connected(self.pool5, 4096, activation='relu')
        self.fc7 = fully_connected(self.fc6, 4096, activation='relu')
        self.output = fully_connected(self.fc7, 1000, activation='softmax')
        return self.output

model = AlexNetModel()
output = model.build_model(images)
# access intermediate layers like self.conv5, self.fc7, etc.

Better 



Summaries 

Taken from: LinearRegression/02_Inspecting_the_graph.ipynb

resi = a*x + b - y

loss = tf.reduce_sum(tf.square(resi), name='loss')

...

#Definition of ops to be stored

loss_summary = tf.scalar_summary("loss_summary", loss) #<-- creates op!

resi_summart = tf.histogram_summary("resi_summart", resi)

merged_summary_op = tf.merge_all_summaries()#<-----  Combine all ops to be stored

sess.run(init_op)

#Where to store

writer = tf.train.SummaryWriter("/tmp/dumm/run1", tf.get_default_graph(), 
'graph.pbtxt')

for e in range(epochs): #Fitting the data for 10 epochs

    ...

#Running the graph to produce output

    sum_str = sess.run(merged_summary_op, feed_dict={x:x_vals, y:y_vals})

    writer.add_summary(sum_str, e) #<--- writing out the output

 



Print- a bit non-trivial at the first sight 

loss = (y - y_pred)**2

loss = tf.Print(loss, [y, y_pred, loss],

                message='Debug y, y_pred ', name='Debug_Print', first_n=5)

# The loss function is now decorated with the print function

with tf.Session() as sess:

…

print('Loss : {}'.format(sess.run(loss, feed_dict={x:10, y:10})))

# Not working is

# tf.Print(loss, [y, y_pred, (y-y_pred)**2], name='Name', first_n=5)

# loss = tf.Print(loss, y, name='Name', first_n=5)

I tensorflow/core/kernels/logging_ops.cc:79] Debug y, y_pred [10][21][121]

Loss : 121.0

The op, which is watched. Creates identity op, with side effect printing.  

Tensors with are printed as side effect 
This, is the op with 
is used from now  



More Debugging  

•  tf.Assert() 
–  Creates runtime assertions 

•  Possibility to use python code as tensorflow op. 
–  tf.py_func() 

 
 

For a detailed explanation of the above concepts see: 
https://wookayin.github.io/TensorflowKR-2016-talk-debugging/ 



Debugging with embedded python code 

See debugging/debug_with_python.ipynb 

Decorating the loss function 


