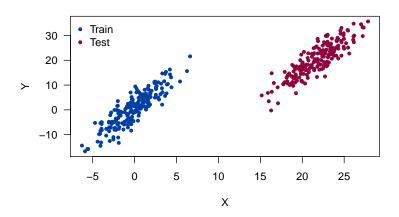
# **Brown Bag Seminar**

#### Distributional anchor regression

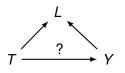
Lucas Kook University of Zurich Zurich University of Applied Sciences

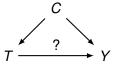
#### **Motivation**

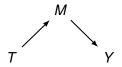
We want to robustly predict an outcome in heterogenous data with potentially unseen perturbations in the test data.



#### The "Causal Revolution"





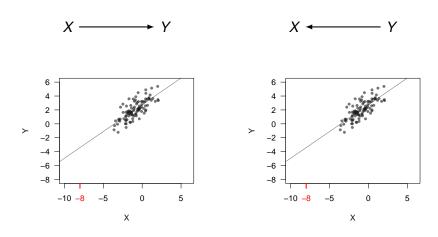


Structural causal models, Bayesian networks and causal calculus



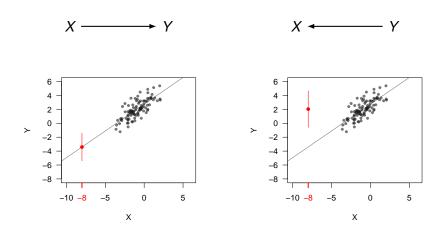
Judea Pearl (Source)

#### Potential outcomes: What if?



What is our best prediction for Y if we do(X = -8)?

#### Potential outcomes: What if?



How do we know which one is the right model?

#### Robustness

"If the answer is highly sensitive to perturbations, you have probably asked the wrong question."

Lloyd N. Trefethen

#### Our aim:

Predict the outcome, such that the prediction is robust towards "perturbations" in future data

#### Robustness

Predict the outcome, such that the prediction is robust towards "perturbations" in future data

These are **future**, **yet unobserved** perturbations, e.g.,

- data from a different country,
- different point in time,
- different experimental setting,
- different environment,

**–** ...

### **Causality and robustness**

Haavelmo (1943)

Causal variables ⇒ Robustness

Peters et al. (2016)

Causal structures 

Robustness



T. Haavelmo (Source)

#### Formalize our aim

Data from **observed** environments:

$$(Y^e, X^e), e \in \mathcal{E}$$

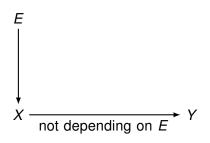
Only part of larger class of **unobserved** environments:

$$\mathcal{F}\supset\mathcal{E}$$

Predict  $Y^e$  given  $X^e$  such that the prediction is robust for all  $e \in \mathcal{F}$  based on data from much fewer environments  $e \in \mathcal{E}$ .

Bühlmann (2018)

### **Connection to causality**

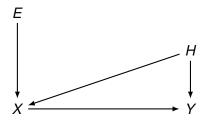


#### Connection to causality:

$$rg\min_{eta} \max_{m{e} \in \mathcal{F}} \mathbb{E}[(Y^{m{e}} - X^{m{e}}eta)^2] = ext{causal parameter}$$

#### A more realistic problem

Include hidden confounders (H)

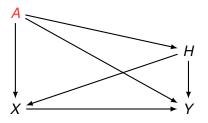


Are these reasonable assumptions?

Equivalent to Instrumental Variable Regression, where  $\it E$  are the IVs June 18, 2020 BBS

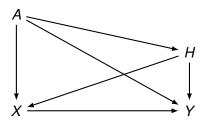
### **Generalization: Anchor regression**

Allow anchors A to influence all variables



We cannot identify the causal parameter  $\beta$  anymore. Price to pay for more realistic assumptions than the IV model.

### **Generalization: Anchor regression**

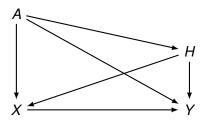


Aim: Induce stability of residuals across environments.

A loss along the lines of

$$L(\beta) = \frac{1}{2n} \left( \| (Y - X\beta) \|_2^2 + \lambda \left\| A^{\top} (Y - X\beta) \right\|_2^2 \right)$$

### **Generalization: Anchor regression**

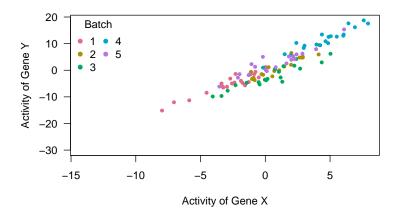


Causal regularization: Decorrelate residuals from anchors

$$L(\beta) = \frac{1}{2n} \left( \| (I - \Pi_A)(Y - X\beta) \|_2^2 + \gamma \| \Pi_A(Y - X\beta) \|_2^2 \right)$$
$$\Pi_A = A(A^{\top}A)^{-1}A^{\top}$$

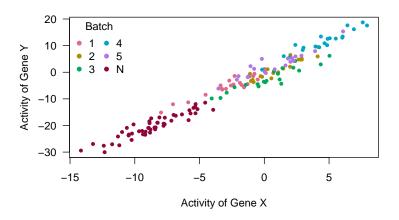
### **Example: Linear anchor regression**

Heterogeneity due to batch-effects in biological experiments



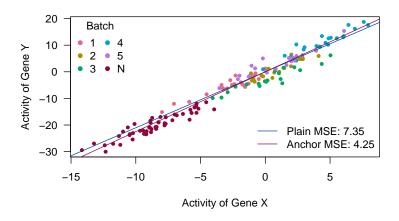
### **Example: Linear anchor regression**

Predict new batch "N", with (unseen) shift perturbations



### **Example: Linear anchor regression**

Predict and evaluate models on new batch "N"



### Linear anchor regression

$$L(\beta) = \frac{1}{2n} \|W_{\gamma} Y - W_{\gamma} X \beta\|_{2}^{2}, \ W_{\gamma} = I - (1 - \sqrt{\gamma}) \Pi_{A}$$

Simply compute OLS on  $\tilde{Y} = W_{\gamma} Y$  and  $\tilde{X} = W_{\gamma} X!$ 

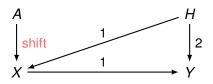
#### Train

#### **Perturbed**

Page 19

#### *A* ∼ Rademacher

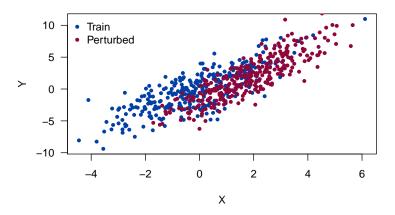
$$\begin{split} \varepsilon_{H}, \varepsilon_{X}, \varepsilon_{Y} &\overset{\text{iid}}{\sim} \mathsf{N}(0,1) \\ H \leftarrow \varepsilon_{H} & H \leftarrow \varepsilon_{H} \\ X \leftarrow \mathsf{A} + H + \varepsilon_{X} & X \leftarrow 1.8 + H + \varepsilon_{X} \\ Y \leftarrow X + 2H + \varepsilon_{Y} & Y \leftarrow X + 2H + \varepsilon_{Y} \end{split}$$



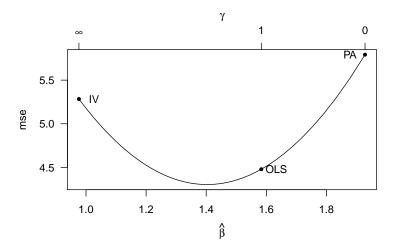
Example from Rotenhäusler (2018)

June 18, 2020 BBS

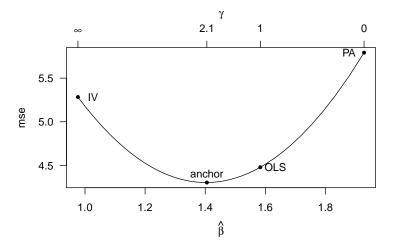
The IV assumptions hold ...



#### But OLS outperforms IV



OLS is still not optimal, but  $\gamma =$  2.1 anchor regression is



### Non-linear anchor regression

Anchor boosting or anchor neural networks

$$L(\beta) = \frac{1}{2n} \| W_{\gamma}(Y - f) \|_{2}^{2}, \ W_{\gamma} = I - (1 - \sqrt{\gamma}) \Pi_{A}$$

with complex conditional expectation function

$$f(x) = \mathbb{E}(Y|X=x)$$

### Non-linear anchor regression

Anchor boosting or anchor neural networks

$$L(\beta) = \frac{1}{2n} \| W_{\gamma}(Y - f) \|_{2}^{2}, \ W_{\gamma} = I - (1 - \sqrt{\gamma}) \Pi_{A}$$

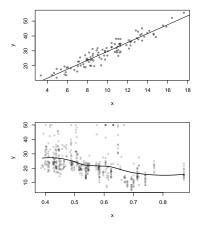
with complex conditional expectation function

$$f(x) = \mathbb{E}(Y|X=x)$$

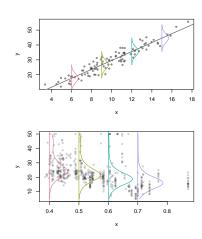
Up until now this was all "anchor curve fitting" . . .

### **Distributional regression**

#### **Curve Fitting**



#### Distributional regression



### Distributional anchor regression

Aim: Derive a probabilistic anchor loss function

$$L(\beta) = -\log$$
-likelihood  $+ \xi \cdot \text{causal regularizer}$ 

#### Changing perspective

- MSE → (negative) log-likelihood
- Least squares residuals → score-based residuals
- Any kind of response (continuous, ordinal, survival)
- Allows for uninformative censoring

#### Score-based residuals

Score contribution for a newly introduced intercept  $\alpha \equiv \mathbf{0}$ 

$$r_i = \partial_{\alpha} \ell(h, \alpha; y_i, \mathbf{x}_i) |_{\hat{h}, \alpha = 0}$$

for a model of the form

$$F_{Y}(Y|\mathbf{x}) = F_{Z}(h(y|\mathbf{x}) - \alpha)$$

Equivalent to a score test for testing  $H_0$ :  $\alpha = 0$  for a covariate, that is not yet included in the model (Lagakos, 1980)

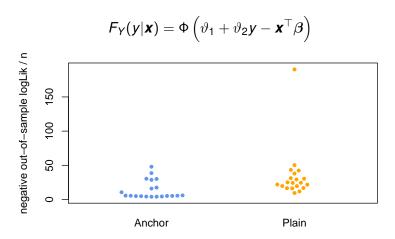
### Distributional anchor regression

#### Probabilistic anchor loss function

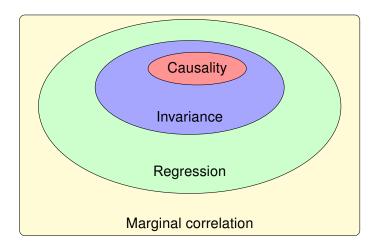
$$L(h) = \underbrace{-\ell(h; y, \mathbf{x})}_{-\text{log-likelihood}} + \underbrace{\xi \|\Pi_A r\|_2^2}_{\text{causal regularizer}}$$

$$r = \partial_{\alpha} \ell(h, \alpha; y, \mathbf{x}) |_{\hat{h}, \alpha = 0}$$

### Simulation: Distributional anchor regression



### Taking a step back



#### **Future work**

- Implement distributional anchor regression in {anchor}
- Combine distributional anchor regression with DNNs
- Apply distributional anchor regression to real-world data
- Theoretical properties of the probabilistic anchor loss
- Estimate anchor variables from data

### **Acknowledgements**

Beate Sick Torsten Hothorn Susanne Wegener Helmut Grabner Lisa Herzog

#### References

Bühlmann, Peter. "Invariance, causality and robustness." arXiv preprint arXiv:1812.08233 (2018).

Haavelmo, Trygve. "The statistical implications of a system of simultaneous equations." *Econometrica, Journal of the Econometric Society* (1943): 1-12.

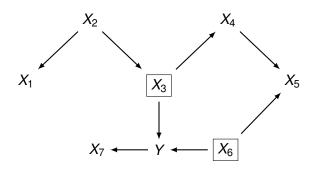
Lagakos, S. W. "The graphical evaluation of explanatory variables in proportional hazard regression models." Biometrika 68.1 (1981): 93-98.

Peters, Jonas, Peter Bühlmann, and Nicolai Meinshausen. "Causal inference by using invariant prediction: identification and confidence intervals." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 78.5 (2016): 947-1012.

Rothenhäusler, Dominik, et al. "Anchor regression: heterogeneous data meets causality." arXiv preprint arXiv:1801.06229 (2018).

## Appendix

#### (Another) connection to causality



$$rg\min_{eta} \max_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[(Y - Xeta)^2] = ext{causal parameter}$$

if  $\mathcal{P}$  contains *all* possible interventional distributions  $\mathbb{P}$  on components of X.

In other words, conditioning on pa(Y) shields against arbitrarily strong interventions on X.

June 18. 2020 BBS

# Motivation for the anchor estimator

# **Prerequisites**

Start from the linear SEM

$$\begin{pmatrix} X \\ Y \\ H \end{pmatrix} = B \begin{pmatrix} X \\ Y \\ H \end{pmatrix} + \varepsilon + MA.$$

corresponding to the anchor regression problem.

The anchor estimator is given by

$$\hat{\beta}(\gamma) = \mathop{\arg\min}_{\beta} \frac{1}{2n} \left\{ \left\| (I - \Pi_{A})(Y - X\beta) \right\|_{2}^{2} + \gamma \left\| \Pi_{A}(Y - X\beta) \right\|_{2}^{2} \right\}.$$

# Worst case risk optimization

 $\hat{\beta}(\gamma)$  solves a worst case optimization problem over a class of shift perturbations  $C_{\gamma}$ . The linear SEM for the perturbed set is

$$\begin{pmatrix} X^{\nu} \\ Y^{\nu} \\ H^{\nu} \end{pmatrix} = B \begin{pmatrix} X^{\nu} \\ Y^{\nu} \\ H^{\nu} \end{pmatrix} + \varepsilon + \nu = (I - B)^{-1} (\varepsilon + \nu),$$

where  $v \in \text{span}(M)$ .

The class of shift perturbations  $C_{\gamma}$  is now defined as

$$\textit{\textbf{C}}_{\gamma} := \big\{\textit{\textbf{v}} : \textit{\textbf{v}} = \textit{\textbf{M}}\delta \text{ for some } \delta \text{ s.t. } \mathsf{Corr}(\delta, \varepsilon) = 0 \text{ and } \mathbb{E}(\delta^{\top}\delta) \preccurlyeq \gamma \mathbb{E}(\textit{\textbf{A}}^{\top}\textit{\textbf{A}})\big\},$$

which allows to formulate the population version of the worst case risk

$$\sup_{v \in C_{\gamma}} \mathbb{E}[(Y^{v} - X^{v}b)^{2}] = \mathbb{E}[((I - P_{A})(Y - Xb))^{2}] + \gamma \mathbb{E}[(P_{A}(Y - Xb))^{2}].$$

Theorem 1 in Rothenhäusler (2018).

#### **Distributional robustness**

Assume X and Y have mean zero, then  $\mathbb{E}[A(Y-Xb)]=\text{Cov}(A,Y-Xb)$ . Let

$$I:=\big\{b\in\mathbb{R}^p:\mathbb{E}[A(Y-Xb)]=0\big\},\,$$

then

$$\beta \in I \Leftrightarrow Y^{\nu} - X^{\nu}\beta$$
 has the same distribution  $\forall \nu \in \text{span}(M)$ ,

which shows the duality between the worst case optimization over a class of shift perturbations and a distributional robustness over the same class.

Thus we established

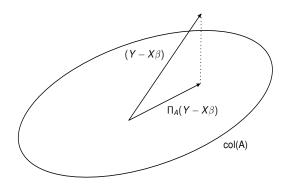
$$\beta(\gamma) = \arg\min_{b} \sup_{v \in C_{\gamma}} \mathbb{E}[(Y^{v} - X^{v}b)^{2}].$$

Theorem 3 in Rothenhäusler (2018).

June 18, 2020 BBS

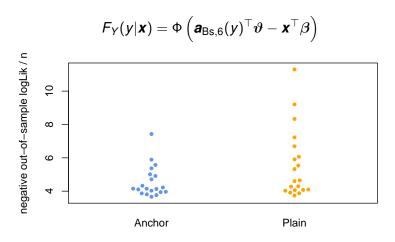
### **Geometric interpretation**

The causal regularization term  $\gamma \|\Pi_A(Y-X\beta)\|_2^2$  encourages orthogonality (uncorrelatedness) between the anchor variables A and the residuals  $Y-X\beta$  for larger  $\gamma$ .



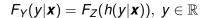
# More empirical results

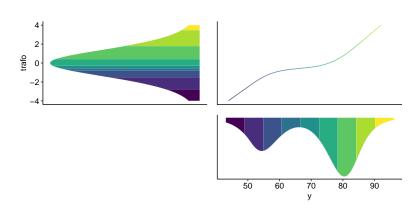
# Simulation: Box-Cox anchor regression



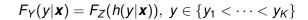
# **Transformation models**

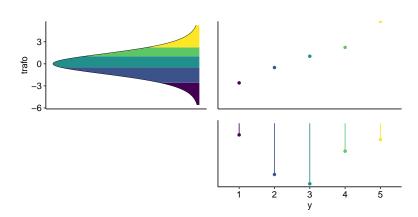
### **Transformation models**





### **Transformation models**

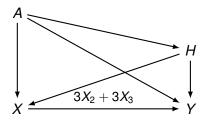




# **Simulation schemes**

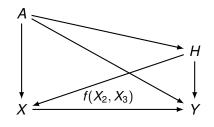
# Simulation: Linear anchor regression

$$X \in \mathbb{R}^{10}, \ A \in \mathbb{R}^2, \ H \in \mathbb{R}$$
 $A \sim \mathsf{N}_2(\mathsf{0},\mathsf{I}), \ H \sim \mathsf{N}(\mathsf{0},\mathsf{1})$ 
 $Y \leftarrow 3X_2 + 3X_3 + H - 2A_1 + \varepsilon_Y$ 
 $X \leftarrow A_1\eta_1 + A_2\eta_2 + H + \varepsilon_{X_j}$ 
 $\gamma_1, \gamma_2, \varepsilon_{X_j}, \varepsilon_Y \overset{\mathrm{i.i.d.}}{\sim} \mathsf{N}(\mathsf{0},\mathsf{1})$ 
 $n_{\mathsf{train}} = 300, \ n_{\mathsf{test}} = 2000$ 
Shift perturbation:  $\sqrt{10}A_{\mathsf{test}}$ 



# Simulation: Non-linear anchor regression

$$X \in \mathbb{R}^{10}, \ A \in \mathbb{R}^{2}, \ H \in \mathbb{R}$$
 $A \sim N_{2}(0, I), \ H \sim N(0, 1)$ 
 $Y \leftarrow f(X_{2}, X_{3}) + 3H - 2A_{1} + \varepsilon_{Y}$ 
 $X \leftarrow A_{1} + A_{2} + 2H + \varepsilon_{X_{j}}$ 
 $\varepsilon_{X_{j}} \sim N(0, 0.5^{2})$ 
 $\varepsilon_{Y} \sim N(0, 0.25^{2})$ 
 $n_{train} = 300, \ n_{test} = 2000$ 



Shift perturbation: 
$$A_{\text{test}} \sim N_{n_{\text{test}}}(\mu, I), \ \mu \sim N_{n_{\text{test}}}(1, 2^2 I)$$
  
 $f(X_2, X_3) = X_2 + X_3 + I(X_2 \le 0) + I(X_2 \le -0.5)I(X_3 \le 1)$