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Motivation

We want to robustly predict an outcome in heterogenous
data with potentially unseen perturbations in the test data.
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The “Causal Revolution”
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Structural causal models,
Bayesian networks
and causal calculus

Judea Pearl (Source)
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https://www.scs.cmu.edu/news/artificial-intelligence-pioneer-judea-pearl-wins-carnegie-mellon-dickson-prize-science


Potential outcomes: What if?

X Y

−10 −5 0 5

−8

−6

−4

−2

0

2

4

6

X

Y

−8

X Y

−10 −5 0 5

−8

−6

−4

−2

0

2

4

6

X
Y

−8

What is our best prediction for Y if we do(X = −8)?
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Potential outcomes: What if?
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How do we know which one is the right model?
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Robustness

“If the answer is highly sensitive to perturbations, you
have probably asked the wrong question.”

– Lloyd N. Trefethen

Our aim:

Predict the outcome, such that the prediction is robust
towards “perturbations” in future data
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Robustness

Predict the outcome, such that the prediction is robust
towards “perturbations” in future data

These are future, yet unobserved perturbations, e.g.,

– data from a different country,

– different point in time,

– different experimental setting,

– different environment,

– ...
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Causality and robustness

Haavelmo (1943)

Causal variables ⇒ Robustness

Peters et al. (2016)

Causal structures⇐ Robustness

T. Haavelmo (Source)
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https://de.wikipedia.org/wiki/Trygve_Haavelmo


Formalize our aim

Data from observed environments:

(Y e,Xe), e ∈ E

Only part of larger class of unobserved environments:

F ⊃ E

Predict Y e given Xe such that the prediction is robust
for all e ∈ F based on data from much fewer
environments e ∈ E .

Bühlmann (2018)
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Connection to causality

X
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Y
not depending on E

Connection to causality:

arg min
β

max
e∈F

E[(Y e − Xeβ)2] = causal parameter
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A more realistic problem

Include hidden confounders (H)
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Are these reasonable assumptions?

Equivalent to Instrumental Variable Regression, where E are the IVs
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Generalization: Anchor regression

Allow anchors A to influence all variables
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We cannot identify the causal parameter β anymore.
Price to pay for more realistic assumptions than the IV model.

Equivalent to IV Regression with invalid instruments A
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Generalization: Anchor regression
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Aim: Induce stability of residuals across environments.

A loss along the lines of

L(β) =
1

2n

(
‖(Y − Xβ)‖22 + λ

∥∥∥A>(Y − Xβ)
∥∥∥2

2

)
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Generalization: Anchor regression

X
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Causal regularization: Decorrelate residuals from anchors

L(β) =
1

2n

(
‖(I − ΠA)(Y − Xβ)‖22 + γ ‖ΠA(Y − Xβ)‖22

)
ΠA = A(A>A)−1A>
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Example: Linear anchor regression

Heterogeneity due to batch-effects in biological experiments
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Example: Linear anchor regression

Predict new batch “N”, with (unseen) shift perturbations
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Example: Linear anchor regression

Predict and evaluate models on new batch “N”
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Plain MSE: 7.35
Anchor MSE: 4.25
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Linear anchor regression

L(β) =
1

2n
‖WγY −WγXβ‖22 , Wγ = I− (1−√γ)ΠA

Simply compute OLS on Ỹ = WγY and X̃ = WγX !
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Simulation: A case for anchor regression

Train

A ∼ Rademacher

εH , εX , εY
iid∼ N(0,1)

H ← εH

X ← A + H + εX

Y ← X + 2H + εY

Perturbed

εH , εX , εY
iid∼ N(0,1)

H ← εH

X ← 1.8 + H + εX

Y ← X + 2H + εY

X

A

Y

H

shift

1

1
2

Example from Rotenhäusler (2018)
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Simulation: A case for anchor regression

The IV assumptions hold . . .
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Simulation: A case for anchor regression

But OLS outperforms IV
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Simulation: A case for anchor regression

OLS is still not optimal, but γ = 2.1 anchor regression is

1.0 1.2 1.4 1.6 1.8

4.5

5.0

5.5

β̂

m
se

2.1 1 0∞
γ

PA

OLS
anchor

IV

June 18, 2020 BBS Page 22



Non-linear anchor regression

Anchor boosting or anchor neural networks

L(β) =
1

2n
‖Wγ(Y − f )‖22 , Wγ = I− (1−√γ)ΠA

with complex conditional expectation function

f (x) = E(Y |X = x)
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Non-linear anchor regression

Anchor boosting or anchor neural networks

L(β) =
1

2n
‖Wγ(Y − f )‖22 , Wγ = I− (1−√γ)ΠA

with complex conditional expectation function

f (x) = E(Y |X = x)

Up until now this was all “anchor curve fitting” . . .
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Distributional regression

Curve Fitting
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Distributional anchor regression

Aim: Derive a probabilistic anchor loss function

L(β) = −log-likelihood + ξ · causal regularizer

Changing perspective

– MSE→ (negative) log-likelihood

– Least squares residuals→ score-based residuals

– Any kind of response (continuous, ordinal, survival)

– Allows for uninformative censoring
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Score-based residuals

Score contribution for a newly introduced intercept α ≡ 0

ri = ∂α`(h, α; yi ,x i)
∣∣
ĥ, α=0

for a model of the form

FY (Y |x) = FZ (h(y|x)− α)

Equivalent to a score test for testing H0: α = 0 for a
covariate, that is not yet included in the model (Lagakos, 1980)
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Distributional anchor regression

Probabilistic anchor loss function

L(h) = −`(h; y,x)︸ ︷︷ ︸
−log-likelihood

+ ξ ‖ΠAr‖22︸ ︷︷ ︸
causal regularizer

r = ∂α`(h, α; y,x)
∣∣
ĥ, α=0
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Simulation: Distributional anchor regression

FY (y|x) = Φ
(
ϑ1 + ϑ2y − x>β
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Taking a step back

Marginal correlation

Regression

Invariance

Causality
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Future work

– Implement distributional anchor regression in {anchor}

– Combine distributional anchor regression with DNNs

– Apply distributional anchor regression to real-world data

– Theoretical properties of the probabilistic anchor loss

– Estimate anchor variables from data
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Appendix



(Another) connection to causality

X1

X2

X3

X4

X5

Y X6X7

arg min
β

max
P∈P

EP[(Y − Xβ)2] = causal parameter

if P contains all possible interventional distributions P on
components of X .

In other words, conditioning on pa(Y ) shields against arbitrarily strong interventions on X .
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Motivation for the anchor estimator



Prerequisites

Start from the linear SEMX
Y
H

 = B

X
Y
H

+ ε+ MA.

corresponding to the anchor regression problem.

The anchor estimator is given by

β̂(γ) = arg min
β

1
2n

{
‖(I − ΠA)(Y − Xβ)‖2

2 + γ ‖ΠA(Y − Xβ)‖2
2

}
.
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Worst case risk optimization

β̂(γ) solves a worst case optimization problem over a class of shift
perturbations Cγ . The linear SEM for the perturbed set isX v

Y v

Hv

 = B

X v

Y v

Hv

+ ε+ v = (I− B)−1(ε+ v),

where v ∈ span(M).

The class of shift perturbations Cγ is now defined as

Cγ :=
{

v : v = Mδ for some δ s.t. Corr(δ, ε) = 0 and E(δ>δ) 4 γE(A>A)
}
,

which allows to formulate the population version of the worst case risk

sup
v∈Cγ

E[(Y v − X v b)2] = E[((I − PA)(Y − Xb))2] + γE[(PA(Y − Xb))2].

Theorem 1 in Rothenhäusler (2018).
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Distributional robustness

Assume X and Y have mean zero, then E[A(Y − Xb)] = Cov(A,Y − Xb).
Let

I :=
{

b ∈ Rp : E[A(Y − Xb)] = 0
}
,

then

β ∈ I ⇔ Y v − X vβ has the same distribution ∀ v ∈ span(M),

which shows the duality between the worst case optimization over a class
of shift perturbations and a distributional robustness over the same class.

Thus we established

β(γ) = arg min
b

sup
v∈Cγ

E[(Y v − X v b)2].

Theorem 3 in Rothenhäusler (2018).
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Geometric interpretation

The causal regularization term γ ‖ΠA(Y − Xβ)‖2
2 encourages

orthogonality (uncorrelatedness) between the anchor variables A and the
residuals Y − Xβ for larger γ.

col(A)

ΠA(Y − Xβ)

(Y − Xβ)
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More empirical results



Simulation: Box-Cox anchor regression

FY (y|x) = Φ
(

aBs,6(y)>ϑ− x>β
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Transformation models



Transformation models

FY (y|x) = FZ (h(y|x)), y ∈ R
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Transformation models

FY (y|x) = FZ (h(y|x)), y ∈ {y1 < · · · < yK}
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Simulation schemes



Simulation: Linear anchor regression

X ∈ R10, A ∈ R2, H ∈ R

A ∼ N2(0, I), H ∼ N(0,1)

Y ← 3X2 + 3X3 + H − 2A1 + εY

X ← A1η1 + A2η2 + H + εXj

γ1, γ2, εXj
, εY

i.i.d.∼ N(0,1)

ntrain = 300, ntest = 2000

Shift perturbation:
√

10Atest

X

A

Y

H

3X2 + 3X3
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Simulation: Non-linear anchor regression

X ∈ R10, A ∈ R2, H ∈ R

A ∼ N2(0, I), H ∼ N(0,1)

Y ← f (X2,X3) + 3H − 2A1 + εY

X ← A1 + A2 + 2H + εXj

εXj
∼ N(0,0.52)

εY ∼ N(0,0.252)

ntrain = 300, ntest = 2000

X

A

Y

H

f (X2,X3)

Shift perturbation: Atest ∼ Nntest(µ, I), µ ∼ Nntest(1,2
2I)

f (X2,X3) = X2 + X3 + I(X2 ≤ 0) + I(X2 ≤ −0.5)I(X3 ≤ 1)
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