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• Main principles of frequentists and Bayesians – a reminder

• Neural networks and how they get trained – a reminder

• What is dropout and what is the connection to Bayesian inference?

• How to do approximate Bayesian inference in deep NN

• How to use dropouts to get an uncertainty measure for predictions?

• How can we use the Bayesian approach to make better models?
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Frequentist’s and Bayesian’s view on data and model parameters

Frequentist: 
- Data are a repeatable random sample

-> e.g. 10 coin tosses: frequencies 2xtail, 8xheads
Model: Bernoulli with head-probability as parameter 

- Underlying model parameters are fixed
during this repeatable data sampling

- We use Maximum Likelihood to determine the 
parameter value under which the observed 
data is most likely. 

- 95% CI means that when repeating the experiment many 
times 95% of all 95% CI will cover the true fixed parameter.

Bayesian: 
- Data are observed once and seen as fixed
- Parameters are described probabilistically
- Before data observation we formulate a prior 

belief in parameter distribution
- After data observation we updated 

posterior distribution of model parameters.
- 95% credibility interval means an interval of parameter 

values that cover 95% of the posterior distribution.

Prior distribution

Posterior distribution

Distribution of data under fixed parameter

tail head

( | )P X 

( )P 

( | X, Y)P 

3



Bayesian modeling has less problems with complex models

Frequentist’s strategy:
You can only use a complex model if you 
have enough data!

Bayesian’s strategy:
Use the model complexity you believe in.

Do not just use the best fitting model.

Do use the full posterior distribution over 
parameter settings leading to vague 
predictions since many different parameter 
settings have significant posterior probability.

2 model parameters

6 model parameters

Models with significant posterior probability 
6 model parameters

Image credits:  Hinton coursera course x*: new input

*

*

*

   y*|x*,X,Y (y*|x*, ) |X,Yp p p d   
prediction via marginalization over :
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Logistic regression or a neural net with 1 neuron
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A neural network is a parametric model

W1

W2

X

Y
We observe 
- inputs X = {xi}i=1,…,N

- outputs Y = {yi}i=1,…,N

Using a NN as output generating model 
we can do parametric inference for 
the connection weights W in the NN that are 
the parameter defining the model.

The output is y ൌ ݂ ܹ,ݔ ൌ ଶܹሺߪ ଵܹݔ ൅ ܾ ሻ
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- LogLikelihood = cost-function C

Find sets of weights  that minimize C!
1W 2W

1z 1y
2z0x y

Taking the gradient with 
chain rule (via backpropagation)

Learning rate

C





Fitting a NN classifier via softmax likelihood optimization

Update weights in back-pass

Determine all zs and ys in forward-pass
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Dropout

Srivastava et al., Journal of Machine Learning Research 15 (2014)

without dropout with dropout

“dropout” 

At each training step we remove random nodes with a  probability 
of p resulting in a sparse version of the full net and we use 
backpropagation to update the weights.

-> In each training step we train another NN model, 
but all models share weights!
Meaning a certain connection weight is the same in all models at the current update value.
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Why “dropout” can be a good idea

Using dropout during training implies:

• We train in each training step another sparse model.
Only weights to not-dropped units are updated

• Sharing weights may introduce “regularization”

• By averaging over these models we should be able to 
“reduce noise”, “overfitting”

Dropout reduces complexity of the model and thus overfitting ?

Use the trained net without dropout during test time

But we need to do a small adjustment!
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Why “dropout” can be a good idea

Use the trained net without dropout during test time

Q: Suppose that with all inputs present at test     
time and the output of this neuron is x.

What would its output be during training time, 
in expectation? (e.g. if p = 0.5)

during test: a = w0*x + w1*y

during training 
with dropout:

Using all units in the test time forward pass leads to an 
output that 2x the expected output during training 
(this is true for linear units without hidden layers).

=> Have to compensate by reducing the weights during test 
time by multiplying them by the dropout probability p=0.5 

0 0
0 y
x 0
x y

+
+
+


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Why “dropout” can be a good idea

The training data consists of many different 
pictures of Oliver Dürr and Albert Einstein

We need a huge number of neurons to extract good 
features which help to distinguish Oliver from Einstein

Dropout forces the network to learn redundant and independent features

has a mustache

is well shaved

holds no mobile

wears no glasses

has dark eyes
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We will see that dropout is an approximation of 
full Bayesian learning using a Bayesian Network

“dropout” 
At each training step we 
remove random nodes 

with a  probability p

“Bayesian NN” 
At each training step we 

update the posterior 
distribution of the weights

In test time we use the 
posterior to determine the 

predictive distribution 13



Bayesian Modeling in the framework of NN

• In Bayesian Modeling we define a prior distribution
over the parameter W:  ௜ܹ~ܰሺ0, defining p(wi) (ܫ

• For classification NN tasks we assume a 
softmax likelihood

• Given a dataset X, Y we then look for the posteriori distribution capturing the 
most probable model parameter given the observed data

  (Y| ,X) ( )|X,Y
(Y|X)

p pp
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likelihood prior

normalizer=marginal likelihood
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Marginalization steps in Bayesian statistics

• We can use the posterior distribution

-> to determine the most probable weight vector
MAP: Maximum a Posteriori

->  to determine credible intervals
->  sample weight vectors from posterior distribution

• For the posteriori we need to determine the normalizer, also called 
model evidence via integrating over all possible parameters weighted 
by their probabilities. This process is also called marginalization 
over  leading to the name  marginal likelihood

  (Y|w,X
(Y|X)

) (w)w|X,Y p p
p

p 


     Y|X Y|X,p p p d   
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A deep NN or deep CNN

• Performs a hierarchical non-linear 
transformation of its input y ൌ ݂ ܹ,ݔ

• These models give us only point 
estimates with no uncertainty 
information.

Using a neural network for prediction

Remark: for shallow NN CIs for the weights can be 
determined if the network is identified (White, 1998)

With Bayesian modeling we can get a 
measure of  uncertainty by evaluating the 
posterior distribution of the NN weights.
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Full Bayesian learning and ideas for approximations

Full Bayesian learning means computing the full posterior distribution 
over all possible parameter settings.

– This is extremely computationally intensive for all but the simplest models
– But it allows us to use complicated models with not so much data

Approximation of full Bayesian learning is the only way if we have 
models with many (>100) parameters or complex models.

– We can use Markov Chain Monte Carlo (MCMC) methods to sample 
parameter vectors  according to their posterior probabilities at the 
observed data - ,ܺ|ሺ߱݌ ܻሻ – and use them to estimate the distribution ݍሺ߱ሻ .

– We can approximate the posterior distribution for the model parameters via
a) Integrated Nested Laplace Approximations (INLA) 
b) Variational inference

- replacing the posterior distribution at the observed data ݌ሺ߱|ܺ, ܻሻ with  
a member ݍሺ߱ሻ of a  simpler distribution family ܳ	that minimizes the 
Kullback–Leibler divergence to the posterior
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Variational inference approximates full Bayesian learning

• Approximate p(|X;Y) with simple distribution q()

• Minimize Kullback Leibler divergence of q from the posterior w.r.t. 

to the variational parameters :

     ( )KL ( ) || p( | ) ( ) log log ( ) log p( | )
p( | ) q

qq q d E q
  

     


    X,Y X,Y
X,Y

Minimizing KL means to wiggle the 
parameter  of q to find the value of 
 for which q resembles the posterior 
distribution as good as possible.

The term variational is used because you pick the best q in Q -- the term derives from the "calculus of variations," which deals with optimization 
problems. A particular q in Q is specified by setting some variational parameters -- the parameter which is adjusted during optimization.
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Variational inference to approximate Bayesian learning ctd.

Minimizing the  KL divergence of q from the posterior dist. p w.r.t. 

is equivalent to maximizing a lower bound of the log marginal likelihood w.r.t. 
(also called evidence lower bound or ELBO)

      L ( ) : ( ) log Y|X, ( ) || p( ) L log (Y | X)VI q p d KL q p          

             

             

Y|X,( )L log (Y | X) log Y|X, log Y|X, log
( ) ( )

Y|X, ( )log log Y|X, log log Y|X, log
( ) ( )

q

q q q q

p pqp p p d p p d E
q q

p p p qE E p E p E
q q p



   



 



 

      
 

    
  

  
           

        
                            

 

    ( ) log Y|X, ( ) || p( )q p d KL q     

 
 
  

  

The key trick is here like in most variational methods, to write the true log-likelihood L as the log of 
an expectation under some q. We can then get a lower bound via Jensen's inequality, which tells us 
that log expectation >= expectation log (since log is concave and q is a distribution).

  ( )KL ( ) || p( | ) ( ) log
p( | )

qq q d
 

   


 X,Y
X,Y
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    L ( ) : ( ) log Y|X, ( ) || p( )VI q p d KL q        

The best  that makes q a good approximation for the posterior is given by 
the  that maximizes the following objective as lower bound of L:

Since this integral is not tractable for almost all q therefore we will MC integration 
to approximate this quantity.

We will sample ෝ߱ from q and look at the following term where for each sampling 
step the integral is replaced by  log	ሺ݌ ܻ ܺ, ෝ߱ ሻ leading to a new objective:

    ˆ ˆL( ) : log Y|X, ( ) || p( )p KL q    

In approximate Bayesian statistics it is known, that ܮ෠ is an unbiased 
estimator of L. 

Variational inference to approximate Bayesian learning ctd.
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Variational inference to approximate Bayesian learning ctd.

    ˆ ˆL( ) : log Y|X, ( ) || p( )p KL q    

    L ( ) : ( ) log Y|X, ( ) || p( )VI q p d KL q        

Results from stochastic inference guarantee that optimizing ܮ෠ w.r.t. 
will converge to the same optimal  than optimizing LVI w.r.t. .

To stepwise optimize ܮ෠ we sample in each step one ෝ߱ from ݍఏሺ߱ሻ and do one 
step of optimization of   and then we update ݍఏሺ߱ሻ before sampling the next ෝ߱. 

For inference repeatedly do:
a) Sample ෝ߱~ݍఏሺ߱ሻ
b) Do one step of minimization w.r.t. :

    ˆ ˆL( ) : log Y|X, ( ) || p( )p KL q    

What kind of q-distribution should we use to resemble dropout with Bayesian learning?
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Define the structure of the approximate distribution q

Mi is as variational parameter of q

Sampling the diagonal elements z from a 
Bernoulli is identical to randomly setting 
columns of M to zero which is identical to 
randomly setting units of the network to zero -> 
dropout!

We define q to factorizes over weight matrices 
Wi of the layers 1 to L. 

( ) ( )
i i

i

q q   M W

mean( )i iM W

For each Wi we define q to be the product of the 
mean weight matrix Mi and a diagonal matrix which 
holds Bernoulli variables on the diagonal. 

For derivations and proofs see:  http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf

 ,( ) diag
i i i i jq     M W M z

, ~ Bernoulli(p )i j iz

~ ( )
ii iqMW W

Approximate posterior 
of model parameters
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Why this structure of the approximate distribution q

 it resembles dropout!
We know what to do during test time: use full NN and set Wi =piWi

 Bernoullis are computationally cheap to get multi-modality

 This q constrains the weights to be near zero:
- for this q  structure the variance of the weights are:

Var( ) p (1 p )T
i i i i i    W M M

- we know that posterior uncertainty decreases with more data 
implying that for fixed dropout probability pi the average weights 
need to decrease with more data. 

The strongest regularization is achieved with dropout probability pi =0.5.

24



• Main principles of frequentists and Bayesians – a reminder

• Neural networks and how they get trained – a reminder

• What is dropout and what is the connection to Bayesian inference?

• How to do approximate Bayesian inference in deep NN

• How to use dropouts to get an uncertainty measure for predictions?

• How can we use the Bayesian approach to make better models?

25



DL with dropout as approximate Bayesian inference
allows to get a prediction distribution for uncertainty estimation 

To get an approximation of the posterior via training

 Randomly set columns of Mi to zero (do dropout)

 Update the weights by doing one step

To sample from the learned approximate 
posterior we just can do dropout  during the test 
time when using the  trained NN for prediction. 

From the received predictions we can estimate 
the predictive distribution and from this different 
uncertainty measures such as the variance.
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Can this insights help us to make better models?

Yes – just do dropout also in the convolutional layer during training and test time!

“all” means dropout 
was done in all layers

“Standard” means no 
dropout in test time

“MC dropout” means that  dropout was done 
in test time and the results were averaged

MC dropout is equivalent to performing several stochastic forward passes through 
the network and averaging the results. By doing so Yarin Gal was able to 
outperform state of the art error rates on MNIST and CIFAR-10 without changing 
the architecture of the used CNNs or anything else beside dropout.
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Dropout approach speeds up reinforcement learning

With dropout: Do several stochastic forward passes through the dropout network 
and choose action with highest value (Thompson sampling)

Without dropout: take random action with probability  and the model-predicted 
action otherwise (Epsilon-greedy)

http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa5
32c1ce.html#graph_canvas

Example: train a Roomba vacuum cleaner via enforcement learning

Reward for collecting dirt
Penalty for bumping into walls
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Thank you for your attention 


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How good is the dropout approach?

Compare performance of dropout-method with well established and published
variational inference (VI) and probabilistic back-propagation (PBP) results
on the basis of root-mean-square-error (RMSE) and log-likelihood (LL). 

The better fitting the model is the smaler is the RMSE.

The smaller the uncertainty of the model is the larger is the LL.


