
Go with the flow
An introduction to normalizing flows

Oliver Dürr
Datalab BBS ZHAW 03/October/2019

1

These people are not
real they are

generated samples
using NF

A bit of Motivation

• A the End of the lecture, you can create and understand something
like:

• Look at the intermediate pictures, they look real.
• Persons no celebrities (not part of celebA-HQ used for training)

2

Outline

• Classification and motivate NF
– Density Estimation

– Generative Models

– Need for flexible distributions

• Change of Variables
• Using networks to control flows

– RealNVP

– If time Autoregressive Flows

• Glow for image data

• Demo code is currently in
– https://github.com/tensorchiefs/dl_book_playground/tree/master/flow

3

https://github.com/tensorchiefs/dl_book_playground/tree/master/flow

Normalizing Flows

• An novel method of parametric density estimation
– Example of parametric density estimation 2-D Gaussians with ! and Σ

4

#$(&', &))&)

&'

• Density Estimations are generative models…

Image from Priyank Jaini talk

Definition: Generative Model [cs231n]

Given training data, generate new samples from same distribution.

5

Several flavors:
• Explicit density estimation: explicitly define and learn !"#$%&(()
• Implicit density estimation: learn model that can sample from !"#$%&(() w/o

explicitly having a density

Why Generative Models?

• Generation of new data

– For fun create persons that does not exists

– Additional training data

– Private Data (anonymization)

– Image and Audio synthesis Wavenet / PixelCNN

• Outlier detection !"#(%)
– Is image/vibration/… x from ok distribution?

• Best with explicit models

• Semi-supervised Learning

– Latent representation

• Flexible replacement for too simple functions

– Pimp up prior of VAE

6Image from Priyank Jaini talk

Generative models currently (2019) on vogue

7Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

VAEs and GANs have been covered in Datalab BBS

Minmax

Approx.
Likelihood
(ELBO)

True,
Likelihood

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Generative models on vogue

8Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

VAEs and GANs have been covered in Datalab BBS

Different Training,
Same generative process

ZàX

Minmax

Approx.
Likelihood
(ELBO)

True,
Likelihood

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Theory: Name Some Distributions

• Gaussian
• Uniform
• Weibull
• Binomial
• Log-Normal

These are the distributions we have in our Toolbox.

Is the reality like this?

9

Reality: Data (1-D)

10

What distribution can you use?

Reality: Data (2-D)

11

x1

x2

What distribution can you use?

Reality: Data (256x256x3=196’608 Dimensions)

12

What distribution can you use?

3 data points sampled from the high dimensional distribution

This should be 196’608 dimensions
and not 3!

Approches for Density Estimation task, we want !"($):

• For easy cases fit normal “estimate mean and variance”
• Limited to simple distributions

• Mixtures of simple Distributions such as Gaussian
• Limited to fairly simple distribution

• Kernel Density estimation / Histograms
• Non-Parametric, low dimensions (non-sparse)

• MCMC
• Allows to sample from complicated distributions
• Need pointwise p(X) up to constant
• Typical !(&|$) in Bayes

• GANs (only have an implicit estimation can sample from !($))
• VAE (only have an approximation to !($))

• log ! + = -. + 012(3(4|+)||!(4|+)) the KL-Term is disregarded
• Normalizing Flows

13

Main Idea of Normalizing Flows

14

!"#$(x)

Data %~strange_function in ℝ$ Transformed function ($~)(0,1)

!"(z)

Idea: learn an invertible transformation to simple function usually Gaussian)(0,1)
• Sampling from p(x): sample (∗ ∼ 1(() then transform it via !"(z*)
• Density of x*: calculate z*= !"#$ %∗ and evaluate)((∗; 0,1)

pdf 1(()pdf p(%)

Main Idea of Normaliuing Flows

15

!"#$(x)

Data %~strange_function in ℝ(Transformed Data)$,)(~+(0,1)

!"(u)

pdf 0())pdf p(%)

x1

x2

Image Credit: RealNVP

Idea: learn an invertible transformation to simple function usually Gaussian +(0,1)
• Sampling from p(x): sample)∗ ∼ 0()) then transform it via !"(z*)
• Density of x*: calculate z*= !"#$ %∗ and evaluate +()∗; 0,1)

Main Idea of Normalizing Flows

16

!"#$(x)

Data %~strange_function in ℝ$())*+

,$, ,., … , ,$())*+~0(0,1)
!"(u)

pdf 5(,)pdf p(%)

Idea: learn an invertible transformation to simple function usually Gaussian 0(0,1)
• Sampling from p(x): sample ,∗ ∼ 5(,) then transform it via !"(z*)
• Density of x*: calculate z*= !"#$ %∗ and evaluate 0(,∗; 0,1)

%$, %., %$())*+~strange_function

With many correlations

Transformation of Variables
-- Some math

17

Simple Transformation

• Say you have z~"#$%&'((0,2)
• % . = .0

18

N = 10000
d = tfd.Uniform(low=0, high=2)
zs = d.sample(N)
x = zs**2

Try to come up with an answer, how is z distributed?

Try it

19

N = 10000
d = tfd.Uniform(low=0, high=2)
zs = d.sample(N) x = zs**2

hist zs hist zs**2

What happened?
Probability Mass needs to be conserved

20

Think of samples

Think of mass
needs to be conserved

1-D

21

Here |!"
#$(&)
!& | since !"

#$(&)
!& can be

negative.
du and dx are positive by definition.

Transformation D>1

22

In higher dimensions

23

! " = $ %&' " ⋅ det
,%-&'(")
,"0

log ! " = log $ %&' " + log(det 567
89(:)
5:;

)

%: ℝ> → ℝ> from u (simple) to x (complicated)

@-0 =
567

89(:)
5:;

= is the Jacobian of %&'

Intuition: The determinant of the Jacobian reflects the change of volume going
from x to u. Going the other way, we get the reverse.

==> “inverse function theorem” (Not surprisingly)

det 567
89(:)
5:;

= '

ABC
DE7(F)
DF;

= det 567 G
5G;

&'

! " = $ %&' " ⋅
H%&'(")
,"

Normalizing Flows (Chaining Transformations)

• Start with a simple distribution for z0
• Repeat change of variable K times to come to a complicated distribution zk

• Chaining several bijectors as layers in neural networks
• This direction is sometimes referred to as “noise to data”

24Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

log $ % = log $' (' − ∑ log det ./0 10
.1023

with (4 = 54((478)

The above equation needs a bit math (see blog post)

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Normalizing Flows in TFP (examples)

25

! " → bijector (the Square in our case)

Doing the Transformation

Chaining several Bijectors

Notebook Flow_101.ipynb

Learning to flow

27

log $ % = log $ '(= log $) ') − ∑ log det /01 21
/2134

with '5 = 65('589)

The log-probability log $ % of a training sample % can be easily calculated from the
Jacobian and the log $) ') . You get ') by successively applying the reversed
functions 6589.

How to fit?
Tune the parameter(s) θ of the model M

so that (observed) data is most likely!

Learning to flow

28

log $ % = log $ '(= log $) ') − ∑ log det /01 21
/2134

with '5 = 65('589)

The log-probability log $ % of a training sample % can be easily calculated from the
Jacobian and the log $) ') . You get u) by successively applying the reversed
functions 6589.

Maximum Likelihood: Minimize the Negative Log Likelihood −∑log $ %5 of all
training data point %5. There parameters of the model, are in the transformations.

Simple example in NB Flow_101.ipynb

Requirements for the bijectors

A flow is composed of serval possible different f’s, the bijectors in TFP
language. The following restrictions apply for them

• f needs for be invertible (strict requirement)

• Training
– Fast calculation of !"#(%)
– Fast calculation of Jacobi-Determinant

• Application:
– Fast calculation of !(')

29

Flows with networks

32

Flows using networks

2 Main lines of research

• Guided by autoregressive (AR) models
– All AR models like Wavenet can be understood as normaliuing flows

• Mask Autoregressive Flow (MAF)
• Inverse Mask Autoregressive Flow (IMAF)

• Using ‘handcrafted’ network based flows
– NICE (1410.8516 Dinh, Krueger, Bengio)
– RealNVP (1605.08803 Dinh, Dickstein, Bengio)
– Glow (https://arxiv.org/abs/1807.03039 Kingma, Dahriwal)

• Unifying framework (Triangular Maps)
– SOS paper ICML https://arxiv.org/abs/1905.02325

33

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1905.02325

Requirement / Design considerations

• Fast calculation of ! " , !$%(')
• Crucial: We need fast calculation of Jacobi Matrix

– det ,-. /
,/0

$%

34

1!%(")
1"%

1!%(")
1"2

1!%(")
1"3

1!2(")
1"%

1!2(")
1"2

1!2(")
1"3

1!3(")
1"%

1!3(")
1"2

1!3(")
1"3

• Lin. Alg.: The determinant of triangular matrix is sum of diagonal terms (trace)

• Want triangular matrix ,-4(/),/5
⏞=
!
0

• è !% " = !% "%, "2, "3 , !: " = !% "%, … , ":, ":<%, ":<2,…
• Diagonal terms ,-5(/),/5

easy to be calculated (no network!)

• ,-5(/)
,/4

no restrictions, can be as complicated as hell (neural network)

Real-NVP (coupling layer)

• Main ingredient the coupling layer
• Consider (high) dimensional data with dimension D

35

• Choose arbitrary d<D !"($%:') and)" $%:' are NNs with inputs $% … $' and outputs for
+ + 1, … , /.

• 0% = $% 02 = $2 … 0' = $'
• 0'3% =)" $%:' + exp !" $%:' ⋅ $'3% # shift and scale transformation
• # 0'3% ∼ 9() =)" $%:' , : = exp !" $%:') renormalisation trick
• 0'32 =)"3% $%:' + exp !"3% ⋅ $'32,
• …
• In short 0%:' = $%:' and 0':; =)":"3' $%:' + exp !" ⋅ $':;

Figure credit Eric Jang

z->u

Real-NVP (coupling layer, properties)

36

Inverse
• !":$ = &":'
• !":$ = &":'
• &$(":' =) !":$ + exp ./(!":$) ⋅ !$(":'
• !$(":' = (&$(":' −) !":$)/exp ./(!":$))

Jacobian for D=5, d=2 note that 5 67(8)589
= 5 :7

589

1 0 0 0 0
0 1 0 0 0
= = exp ."(!":>) 0 0
= = = exp .>(!":>) 0
= = = = exp .?(!":>)

j

i

==don’t care

&? =)/ !":> + exp ./ !":> ⋅ !?

&" = !"
&> = !>

&@ =)/ !":> + exp ./ !":> ⋅ !@
&A =)/ !":> + exp ./ !":> ⋅ !A

B .
B!"

B .
B!>

B .
B!?

B .
B!@

B .
B!A

No network

z->u

Do the DL-Trick

44

Stack more Layers (Permutation)

• In RealNVP
– d is arbitrary and also the ordering
– In AR-Flows ordering is arbitrary

• When stacking several coupling layers put fixed permutation of
dimensions in between

• Fix permutation is invertible and det=1 (If a bijection)

45

Demo

• See Flow_101_learning_parameters_NVP

46

Glow for image data
--arXiv:1807.03039

47

Specialties of glow

• Use 1x1convolutions instead of Permutation

• Image Data
– Multiscale Architecture (also in RealNVP Paper)
– X and Z are now tensors (3 dimensional, shape w,h,c)
– Keep the w,h dimension work on the channel dimension
– The channel dimension get’s larger by squeeze operation (see below)
– As before (Affine coupling layer now with tensors)

48

Glow (new incredients)

• Additional actnorm (like a batchnorm for batch siue 1)
• Instead of a permutation 1x1 convolution is used (simple Matrix

Multiplication)
• They stack 32 of those layers

50

Multiscale Architecture

• Squeeze operation:
– s,s,c à s/2, s/2, 4*c
– Reduces the spatial resolution
– Keeps the number of entries fixed

• Split operation
– Splits input tensor in two halves
– 50% of the variables only observe

one flow. These correspond to fine
grade details.

– The rest is squeezed and thus
describes finer details

– L = 6 in paper

51

(256,256,3)

(128,128,12)

(128,128,12)

z1=(128,128,6)
(128,128,6)

Multiscale Architecture

• Shapes of the Z

52

(256,256,3)

(128,128,12)

(128,128,12)

z1=(128,128,6)
(128,128,6)

! = 256,256,3

Demo

• Network has been trained on CelebA-HQ
– 30000 (256x256x3) images of celebrities
– Images have been aligned

• Sampling: draw 256*256*3 numbers from N(0,1)
– Reduced Temperature draw from N(0,T*1)

• Interpolation
– Blackboard

• Demo
– Uses pretrained network
– fun_with_glow

53

Further reading

Some interesting reads and talks

• Eric Jang
– Blog: part1 (introduction) part2 (modern flows)
– 2019 ICML Tutorial

• Priyank Jaini
– Lecture Waterloo University CS 480_680 8/24/2019 lecture 23 (slides |

youtube)
– SOS paper ICML (https://arxiv.org/abs/1905.02325) Talk

• Arsenii Ashukha
– Lecture at day 3 at deepbayes.ru summer school 2019 (slides | video)

• Papers (relevant to this talk)
– Density estimation using Real NVP: https://arxiv.org/abs/1605.08803
– Glow: Generative Flow with Invertible 1×1 Convolutions

https://arxiv.org/abs/1807.03039

54

Coming soon

https://blog.evjang.com/2018/01/nf1.html?m=1
https://blog.evjang.com/2018/01/nf2.html
https://slideslive.com/38917907/tutorial-on-normalizing-flows
https://cs.uwaterloo.ca/~ppoupart/teaching/cs480-spring19/slides/cs480-lecture23.pdf
https://www.youtube.com/watch?v=3KUvxIOJD0k&feature=youtu.be
https://arxiv.org/abs/1905.02325
https://youtube.videoken.com/embed/e9a-J0QALhI?tocitem=2
http://deepbayes.ru/
https://github.com/bayesgroup/deepbayes-2019/tree/master/lectures/day3
https://www.youtube.com/watch?v=v4gp1dMvWJo&list=PLe5rNUydzV9QHe8VDStpU0o8Yp63OecdW&index=15&t=0s
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://www.manning.com/books/probabilistic-deep-learning-with-python?a_aid=probabilistic_deep_learning&a_bid=78e55885

Thank you! Questions?

55

Further use of flows

• It’s possible to use normaliuing flow as a drop-in replacement for
anywhere you would use a Gaussian, such as VAE priors [evjang]

56

q(u|x) is network parameteruing
Gaussian

Use NF to make this more expressive

https://blog.evjang.com/2018/01/nf1.html?m=1

Material to check

• Tutorial on normaliuing flows, slideslive.com/38917907/tutorial-on-

normaliuing-flows

• ● Tips for Training Likelihood Models,

blog.evjang.com/2019/07/likelihood-model-tips.html

• ● FFJORD tutorial, https://youtu.be/_ALdCSSVYkw

• ● Must read papers:

– ○ Variational Inference with Normaliuing Flows,

https://arxiv.org/abs/1505.05770

– ○ Density estimation using Real NVP, https://arxiv.org/abs/1605.08803

– ○ Glow: Generative Flow with Invertible 1×1 Convolutions

https://arxiv.org/abs/1807.03039

– ○ Sylvester Normaliuing Flows for Variational Inference,

https://arxiv.org/abs/1803.05649

– ○ FFJORD: Free-form Continuous Dynamics for Scalable Reversible

Generative Models, https://arxiv.org/abs/1810.01367

– ○ Do Deep Generative Models Know What They Don't Know?,

https://arxiv.org/abs/1810.09136

– ○ Classification Accuracy Score, https://arxiv.org/abs/1905.10887

57

