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These people are not 
real they are 

generated samples 
using NF



A bit of Motivation

• A the End of the lecture, you can create and understand something 
like:

• Look at the intermediate pictures, they look real.
• Persons no celebrities (not part of celebA-HQ used for training)
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Outline

• Classification and motivate NF
– Density Estimation

– Generative Models

– Need for flexible distributions

• Change of Variables
• Using networks to control flows

– RealNVP

– If time Autoregressive Flows

• Glow for image data

• Demo code is currently in 
– https://github.com/tensorchiefs/dl_book_playground/tree/master/flow
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https://github.com/tensorchiefs/dl_book_playground/tree/master/flow


Normalizing Flows 

• An novel method of parametric density estimation
– Example of parametric density estimation 2-D Gaussians with ! and Σ
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• Density Estimations are generative models…

Image from Priyank Jaini talk



Definition: Generative Model [cs231n]

Given training data, generate new samples from same distribution.
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Several flavors: 
• Explicit density estimation: explicitly define and learn !"#$%&(()
• Implicit density estimation: learn model that can sample from !"#$%&(() w/o 

explicitly having a density



Why Generative Models?

• Generation of new data

– For fun create persons that does not exists

– Additional training data

– Private Data (anonymization)

– Image and Audio synthesis Wavenet / PixelCNN

• Outlier detection !"#(%)
– Is image/vibration/… x from ok distribution? 

• Best with explicit models

• Semi-supervised Learning

– Latent representation

• Flexible replacement for too simple functions

– Pimp up prior of VAE

6Image from Priyank Jaini talk



Generative models currently (2019) on vogue

7Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

VAEs and GANs have been covered in Datalab BBS 
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https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Generative models on vogue

8Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

VAEs and GANs have been covered in Datalab BBS 

Different Training, 
Same generative process

ZàX
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https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Theory: Name Some Distributions

• Gaussian
• Uniform
• Weibull
• Binomial
• Log-Normal

These are the distributions we have in our Toolbox.

Is the reality like this?
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Reality: Data (1-D)
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What distribution can you use?



Reality: Data (2-D)
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x1

x2

What distribution can you use?



Reality: Data (256x256x3=196’608 Dimensions)
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What distribution can you use?

3 data points sampled from the high dimensional distribution

This should be 196’608 dimensions
and not 3! 



Approches for Density Estimation task, we want !"($):

• For easy cases fit normal “estimate mean and variance”
• Limited to simple distributions

• Mixtures of simple Distributions such as Gaussian
• Limited to fairly simple distribution

• Kernel Density estimation / Histograms
• Non-Parametric, low dimensions (non-sparse)

• MCMC 
• Allows to sample from complicated distributions 
• Need pointwise p(X) up to constant
• Typical !(&|$) in Bayes

• GANs (only have an implicit estimation can sample from !($))
• VAE    (only have an approximation to !($))

• log ! + = -. + 012(3(4|+)||!(4|+)) the KL-Term is disregarded
• Normalizing Flows
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Main Idea of Normalizing Flows
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!"#$(x)

Data %~strange_function in ℝ$ Transformed function  ($~)(0,1)

!"(z)

Idea: learn an invertible transformation to simple function usually Gaussian )(0,1)
• Sampling from p(x): sample (∗ ∼ 1(() then transform it via !"(z*) 
• Density of x*: calculate z*= !"#$ %∗ and evaluate )((∗; 0,1)

pdf 1(()pdf p(%)



Main Idea of Normaliuing Flows
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!"#$(x)

Data %~strange_function in ℝ( Transformed Data )$, )(~+(0,1)

!"(u)

pdf 0())pdf p(%)

x1

x2

Image Credit: RealNVP

Idea: learn an invertible transformation to simple function usually Gaussian +(0,1)
• Sampling from p(x): sample )∗ ∼ 0()) then transform it via !"(z*) 
• Density of x*: calculate z*= !"#$ %∗ and evaluate +()∗; 0,1)



Main Idea of Normalizing Flows
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!"#$(x)

Data %~strange_function in ℝ$())*+

,$, ,., … , ,$())*+~0(0,1)
!"(u)

pdf 5(,)pdf p(%)

Idea: learn an invertible transformation to simple function usually Gaussian 0(0,1)
• Sampling from p(x): sample ,∗ ∼ 5(,) then transform it via !"(z*) 
• Density of x*: calculate z*= !"#$ %∗ and evaluate 0(,∗; 0,1)

%$, %., %$())*+~strange_function

With many correlations



Transformation of Variables
-- Some math
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Simple Transformation

• Say you have z~"#$%&'((0,2)
• % . = .0
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N = 10000
d = tfd.Uniform(low=0, high=2)
zs = d.sample(N)
x = zs**2

Try to come up with an answer, how is z distributed?



Try it
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N = 10000
d = tfd.Uniform(low=0, high=2)
zs = d.sample(N) x = zs**2

hist zs hist zs**2



What happened?
Probability Mass needs to be conserved
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Think of samples

Think of mass 
needs to be conserved



1-D 
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Here |!"
#$(&)
!& | since !"

#$(&)
!& can be 

negative.  
du and dx are positive by definition.



Transformation D>1
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In higher dimensions 
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! " = $ %&' " ⋅ det
,%-&'( ")
,"0

log ! " = log $ %&' " + log( det 567
89( :)
5:;

)

%: ℝ> → ℝ> from u (simple) to x (complicated)

@-0 =
567

89( :)
5:;

= is the Jacobian of %&'

Intuition: The determinant of the Jacobian reflects the change of volume going 
from x to u. Going the other way, we get the reverse. 

==> “inverse function theorem” (Not surprisingly)

det 567
89( :)
5:;

= '

ABC
DE7( F)
DF;

= det 567 G
5G;

&'

! " = $ %&' " ⋅
H%&'( ")
,"



Normalizing Flows (Chaining Transformations)

• Start with a simple distribution for z0
• Repeat change of variable K times to come to a complicated distribution zk

• Chaining several bijectors as layers in neural networks
• This direction is sometimes referred to as “noise to data”

24Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

log $ % = log $' (' − ∑ log det ./0 10
.1023

with  (4 = 54((478 )

The above equation needs a bit math (see blog post)

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Normalizing Flows in TFP (examples)
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! " → bijector (the Square in our case)

Doing the Transformation

Chaining several Bijectors

Notebook Flow_101.ipynb



Learning to flow
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log $ % = log $ '( = log $) ') − ∑ log det /01 21
/2134

with  '5 = 65('589 )

The log-probability log $ % of a training sample % can be easily calculated  from the 
Jacobian and the  log $) ') . You get ') by successively applying the reversed 
functions 6589.

How to fit? 
Tune the parameter(s) θ of the model M

so that (observed) data is most likely! 



Learning to flow

28

log $ % = log $ '( = log $) ') − ∑ log det /01 21
/2134

with  '5 = 65('589 )

The log-probability log $ % of a training sample % can be easily calculated  from the 
Jacobian and the  log $) ') . You get u) by successively applying the reversed 
functions 6589.

Maximum Likelihood: Minimize the Negative Log Likelihood −∑log $ %5 of all 
training data point %5. There parameters of the model, are in the transformations.

Simple example in NB Flow_101.ipynb



Requirements for the bijectors

A flow is composed of serval possible different f’s, the bijectors in TFP 
language. The following restrictions apply for them

• f needs for be invertible (strict requirement)

• Training 
– Fast calculation of !"#(%)
– Fast calculation of Jacobi-Determinant

• Application:
– Fast calculation of !(')
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Flows with networks
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Flows using networks

2 Main lines of research

• Guided by autoregressive (AR) models 
– All AR models like Wavenet can be understood as normaliuing flows

• Mask Autoregressive Flow (MAF)
• Inverse Mask Autoregressive Flow (IMAF)

• Using ‘handcrafted’ network based flows
– NICE (1410.8516 Dinh, Krueger, Bengio)
– RealNVP (1605.08803 Dinh, Dickstein, Bengio)
– Glow (https://arxiv.org/abs/1807.03039 Kingma, Dahriwal)

• Unifying framework (Triangular Maps)
– SOS paper ICML https://arxiv.org/abs/1905.02325
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https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1905.02325


Requirement / Design considerations

• Fast calculation of ! " , !$%(')
• Crucial: We need fast calculation of Jacobi Matrix

– det ,-. /
,/0

$%
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• Lin. Alg.: The determinant of triangular matrix is sum of diagonal terms (trace)

• Want triangular matrix ,-4(/),/5
⏞=
!
0

• è !% " = !% "%, "2, "3 , !: " = !% "%, … , ":, ":<%, ":<2,…
• Diagonal terms ,-5(/),/5

easy to be calculated (no network!)

• ,-5(/)
,/4

no restrictions, can be as complicated as hell (neural network)



Real-NVP (coupling layer)

• Main ingredient the coupling layer
• Consider (high) dimensional data with dimension D
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• Choose arbitrary d<D !"($%:') and )" $%:' are NNs with inputs $% … $' and outputs for 
+ + 1, … , /.

• 0% = $% 02 = $2 … 0' = $'
• 0'3% = )" $%:' + exp !" $%:' ⋅ $'3% # shift and scale transformation
• # 0'3% ∼ 9() = )" $%:' , : = exp !" $%:' ) renormalisation trick
• 0'32 = )"3% $%:' + exp !"3% ⋅ $'32, 
• …
• In short 0%:' = $%:' and 0':; = )":"3' $%:' + exp !" ⋅ $':;

Figure credit Eric Jang

z->u



Real-NVP (coupling layer, properties)
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Inverse 
• !":$ = &":'
• !":$ = &":'
• &$(":' = ) !":$ + exp ./(!":$) ⋅ !$(":'
• !$(":' = (&$(":' − ) !":$ )/exp ./(!":$))

Jacobian for D=5, d=2 note that 5 67(8)589
= 5 :7

589

1 0 0 0 0
0 1 0 0 0
= = exp ."(!":>) 0 0
= = = exp .>(!":>) 0
= = = = exp .?(!":>)

j

i

==don’t care 

&? = )/ !":> + exp ./ !":> ⋅ !?

&" = !"
&> = !>

&@ = )/ !":> + exp ./ !":> ⋅ !@
&A = )/ !":> + exp ./ !":> ⋅ !A

B .
B!"

B .
B!>

B .
B!?

B .
B!@

B .
B!A

No network 

z->u



Do the DL-Trick
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Stack more Layers (Permutation)

• In RealNVP
– d is arbitrary and also the ordering 
– In AR-Flows ordering is arbitrary

• When stacking several coupling layers put fixed permutation of 
dimensions in between

• Fix permutation is invertible and det=1 (If a bijection)
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Demo

• See Flow_101_learning_parameters_NVP
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Glow for image data
--arXiv:1807.03039
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Specialties of glow

• Use 1x1convolutions instead of Permutation

• Image Data
– Multiscale Architecture (also in RealNVP Paper)
– X and Z are now tensors (3 dimensional, shape w,h,c)
– Keep the w,h dimension work on the channel dimension
– The channel dimension get’s larger by squeeze operation (see below)
– As before (Affine coupling layer now with tensors)
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Glow (new incredients)

• Additional actnorm (like a batchnorm for batch siue 1)
• Instead of a permutation 1x1 convolution is used (simple Matrix 

Multiplication)
• They stack 32 of those layers
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Multiscale Architecture

• Squeeze operation:
– s,s,c à s/2, s/2, 4*c
– Reduces the spatial resolution
– Keeps the number of entries fixed

• Split operation
– Splits input tensor in two halves
– 50% of the variables only observe 

one flow. These correspond to fine 
grade details. 

– The rest is squeezed and thus 
describes finer details

– L = 6 in paper
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(256,256,3)

(128,128,12)

(128,128,12)

z1=(128,128,6)
(128,128,6)



Multiscale Architecture

• Shapes of the Z
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(256,256,3)

(128,128,12)

(128,128,12)

z1=(128,128,6)
(128,128,6)

! = 256,256,3



Demo

• Network has been trained on CelebA-HQ 
– 30000 (256x256x3) images of celebrities
– Images have been aligned

• Sampling: draw 256*256*3 numbers from N(0,1)
– Reduced Temperature draw from N(0,T*1)

• Interpolation
– Blackboard 

• Demo
– Uses pretrained network
– fun_with_glow
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Further reading 

Some interesting reads and talks 

• Eric Jang
– Blog: part1 (introduction) part2 (modern flows)
– 2019 ICML Tutorial

• Priyank Jaini
– Lecture Waterloo University CS 480_680 8/24/2019 lecture 23 (slides | 

youtube)
– SOS paper ICML (https://arxiv.org/abs/1905.02325) Talk

• Arsenii Ashukha
– Lecture at day 3 at deepbayes.ru summer school 2019 (slides | video)

• Papers (relevant to this talk)
– Density estimation using Real NVP: https://arxiv.org/abs/1605.08803
– Glow: Generative Flow with Invertible 1×1 Convolutions 

https://arxiv.org/abs/1807.03039
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Coming soon

https://blog.evjang.com/2018/01/nf1.html?m=1
https://blog.evjang.com/2018/01/nf2.html
https://slideslive.com/38917907/tutorial-on-normalizing-flows
https://cs.uwaterloo.ca/~ppoupart/teaching/cs480-spring19/slides/cs480-lecture23.pdf
https://www.youtube.com/watch?v=3KUvxIOJD0k&feature=youtu.be
https://arxiv.org/abs/1905.02325
https://youtube.videoken.com/embed/e9a-J0QALhI?tocitem=2
http://deepbayes.ru/
https://github.com/bayesgroup/deepbayes-2019/tree/master/lectures/day3
https://www.youtube.com/watch?v=v4gp1dMvWJo&list=PLe5rNUydzV9QHe8VDStpU0o8Yp63OecdW&index=15&t=0s
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://www.manning.com/books/probabilistic-deep-learning-with-python?a_aid=probabilistic_deep_learning&a_bid=78e55885


Thank you! Questions?
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Further use of flows

• It’s possible to use normaliuing flow as a drop-in replacement for 
anywhere you would use a Gaussian, such as VAE priors [evjang]
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q(u|x) is network parameteruing
Gaussian  

Use NF to make this more expressive 

https://blog.evjang.com/2018/01/nf1.html?m=1


Material to check

• Tutorial on normaliuing flows, slideslive.com/38917907/tutorial-on-

normaliuing-flows 

• ● Tips for Training Likelihood Models, 

blog.evjang.com/2019/07/likelihood-model-tips.html

• ● FFJORD tutorial, https://youtu.be/_ALdCSSVYkw

• ● Must read papers: 

– ○ Variational Inference with Normaliuing Flows, 

https://arxiv.org/abs/1505.05770 

– ○ Density estimation using Real NVP, https://arxiv.org/abs/1605.08803 

– ○ Glow: Generative Flow with Invertible 1×1 Convolutions 

https://arxiv.org/abs/1807.03039 

– ○ Sylvester Normaliuing Flows for Variational Inference, 

https://arxiv.org/abs/1803.05649 

– ○ FFJORD: Free-form Continuous Dynamics for Scalable Reversible 

Generative Models, https://arxiv.org/abs/1810.01367 

– ○ Do Deep Generative Models Know What They Don't Know?, 

https://arxiv.org/abs/1810.09136 

– ○ Classification Accuracy Score, https://arxiv.org/abs/1905.10887 
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