Go with the flow

An introduction to normalizing flows

Oliver Durr
Datalab BBS ZHAW 03/October/2019

A bit of Motivation

« Athe End of the lecture, you can create and understand something
like:

* Look at the intermediate pictures, they look real.
» Persons no celebrities (not part of celebA-HQ used for training)

Outline

Classification and motivate NF
— Density Estimation
— Generative Models
— Need for flexible distributions
Change of Variables

Using networks to control flows
— RealNVP

— If time Autoregressive Flows
Glow for image data

Demo code is currently in
— https://github.com/tensorchiefs/dl book playground/tree/master/flow

https://github.com/tensorchiefs/dl_book_playground/tree/master/flow

Normalizing Flows

* An novel method of parametric density estimation
— Example of parametric density estimation 2-D Gaussians with ¢ and X

X2 Po (X1, X3)

« Density Estimations are generative models...

Image from Priyank Jaini talk

Definition: Generative Model [cs231n]

Given training data, generate new samples from same distribution.

2 =y

Training data ~ p_._(x) Generated samples ~

model)

Want to learn p_ . (x) similarto p,_._(x)

Several flavors:
. explicitly define and learn p,,,,g401(%)
. learn model that can sample from p,,,,40:(x) W/0
explicitly having a density

Why Generative Models?

Generation of new data
— For fun create persons that does not exists
— Additional training data
— Private Data (anonymization)
— Image and Audio synthesis Wavenet / PixelCNN

Outlier detection p, (x)

— Is image/vibration/... x from ok distribution?
» Best with explicit models

Semi-supervised Learning
— Latent representation

Flexible replacement for too simple functions
— Pimp up prior of VAE

Image from Priyank Jaini talk

Generative models currently (2019) on vogue

GAN: minimax the | % piseriminator . Generator ol o/ Minmax
classification error loss. x D(x) G (z) -
Approx.
VAE: maximize ELBO. x (—»| Encoder z Decoder L1/ | Likelihood
q6(2[x) po(x|z) (ELBO)
Flow-based
generative models: X —» Flow Ll z — Inverse —» %/ T_ruef
minimize the negative f(x) (=) Likelihood
log-likelihood

VAEs and GANs have been covered in Datalab BBS

Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html 7

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Generative models on vogue

. Minmax
GAN: minimax the Z Generator > ¥/
classification error loss. G(z)
Different Training,
Same generative process Apprpx.
VAE: maximize ELBO. | z Dec‘(’dle’)——> x' | Likelihood
po(x|z
Z>X (ELBO)
Flow-based
generative models: Z > Inverse —» %/ T_ruej
minimize the negative (=) Likelihood
log-likelihood

VAEs and GANs have been covered in Datalab BBS

Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html g

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Theory: Name Some Distributions

« (Gaussian

* Uniform

« Weibull

* Binomial

* Log-Normal

These are the distributions we have in our Toolbox.

Is the reality like this?

Reality: Data (1-D)

0.04-

0.03-

density
o
o
N

0.01-

0.00- S LA AR R AR LA RN AT N I

40 60 80 100
Waiting_Time

What distribution can you use?

10

Reality: Data (2-D)

What distribution can you use?

11

Reality: Data (256x256x3=196'608 Dimensions)

3 data points sampled from the high dimensional distribution

>

I1

This should be 196’608 dimensions
and not 3!

What distribution can you use?

12

Approches for Density Estimation task, we want pg(X):

For easy cases fit normal “estimate mean and variance”
« Limited to simple distributions
Mixtures of simple Distributions such as Gaussian
« Limited to fairly simple distribution
Kernel Density estimation / Histograms
 Non-Parametric, low dimensions (non-sparse)
MCMC
« Allows to sample from complicated distributions
* Need pointwise p(X) up to constant
* Typical p(W|X) in Bayes
GANs (only have an implicit estimation can sample from p(X))
VAE (only have an approximation to p(X))

* log(p(x)) = LV + PrlglelertHplzlx)) the KL-Term is disregarded

Normalizing Flows

13

Main Idea of Normalizing Flows

Data x~strange_function in R? Transformed function z,~N(0,1)
. -1 0.5-
fo ()
0.03- | o4
% —0.3
€ 0.02- =3
% 0.02 = o
fo(@)
0.00- < 0.0-
R R T AN A | JEE I _._ e
40 60 80 100 -2.5 0.0 2.5
Waiting_Time z
pdf p(x) pdf m(2)

|ldea: learn an invertible transformation to simple function usually Gaussian N(0,1)
« Sampling from p(x): sample z* ~ m(z) then transform it via f(z*)
- Density of x*: calculate z*= f; '(x*) and evaluate N(z*;0,1)

14

Main Idea of Normaliuing Flows

Data x~strange_function in R? Transformed Data z,,z,~N(0,1)

T fo(u) A

pdf p(x) pdf 7 (2)

|ldea: learn an invertible transformation to simple function usually Gaussian N(0,1)
« Sampling from p(x): sample z* ~ m(z) then transform it via f(z*)
- Density of x*: calculate z*= f; '(x*) and evaluate N(z*;0,1)

Image Credit: RealNVP 15

Main Idea of Normalizing Flows

Data x~strange_function in R1°6608

fo ' (x)
>
X1, X5, X ~strange function
1=2,7196608 9e_ Z1,Z2, -, Z196608~N(0,1)
With many correlations fo(U)
%%@ ‘
pdf p(x) pdf ()

|ldea: learn an invertible transformation to simple function usually Gaussian N(0,1)
« Sampling from p(x): sample z* ~ m(z) then transform it via f(z*)
- Density of x*: calculate z*= f; '(x*) and evaluate N(z*;0,1)

16

Transformation of Variables
-- Some math

Simple Transformation

e Say you have z~Uniform(0,2) N = 10000
R — 2 d = tfd.Uniform(low=0, high=2)
f(Z) — 7 zs = d.sample (N)
X = zg**2
o
T 9, oce<?
n&'):g So ¢ T W”Y /'(.éc. Z
) ns -
J2)=
YA
| 9
Z

Try to come up with an answer, how is z distributed? ”

Try it

= 10000

= tfd.Uniform(low=0, high=2)

d.sample (N)

hist zs

0.0 -

000 025 050 075 100 125 150 175 200

14 -

12 A

density

ZS**D

hist zs**2

25

30

35

40

19

What happened?
Probability Mass needs to be conserved

Think of samples

VRV RV i NN
)
0
| /RE:

Think of mass V/

needs to be conserved ’
/ Z

m)a/x

e~ 0) Y G

niz)dz = Px)dx

20

1-D

niz)ee = Px)dx

— JU(R) AT
=p p(x) o

x={(z) = 7=F (x)
29(o(x) = ({1 Ic// (x) {

e X =gt z:f (x)=Ix
pix) = T (47) 4=
' A
[D(X):{;l?"%_‘fx:' Oexsy
0
dmn ”K,

1()

-1
) can be
dx

Here | | since

negahve

du and dx are positive by definition.

21

Transformation D>1

- VR L W f (K)
/f (x) R 0 X2 ajrz
G 5 | L® L'

A DX D> B?‘_g
- 2oL R LK)
\ O X2 S 2 a -

In higher dimensions

f: RP - RP from u (simple) to x (complicated)

1
p() = 7(F1(0)) ‘(df (x))‘ e p() = () ‘dt(m)‘

ax]

logp(x) = log m(£ ™ () + log(|det (2L _22))

ax]

aff (%) _

cij = —-—= = is the Jacobian of f~*

J

Intuition: The determinant of the Jacobian reflects the change of volume going
from x to u. Going the other way, we get the reverse.

==> “inverse function theorem” (Not surprisingly)

det(= = |det
| 0x; ‘ det(afi(z)>| 0z;

aZj

-1

23

Normalizing Flows (Chaining Transformations)

\
NEURAL
NETWORKS

STACK
MORE
LAYERS

« Start with a simple distribution for z,

 Repeat change of variable K times to come to a complicated distribution z,
« Chaining several bijectors as layers in neural networks

« This direction is sometimes referred to as “noise to data”

/7 N\ /7 AN 7 \

’ \ ’ \ ’ \
/ \ / \ ’ \
1 \ 1 \ ! \

1 1 | 1
\ 1 \ ~ | \
\ ,I \ I TII \ /I

\ \ \

\ ,/ A ,, \ /,

2o ~ pPo(2zo) z; ~ pi(2;) zx ~ Pk (ZK)

|6fi(Zi)
0zi—4

log p(x) = log po(z) — X log (det |1 %) with 7, = fi(zi-1)

The above equation needs a bit math (see blog post)

Image (modified) from: https://lilianweng.qgithub.io/lil-log/2018/10/13/flow-based-deep-generative-models.htmlo4

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Normalizing Flows in TFP (examples)

f(z) » bijector (the Square in our case) Chaining several Bijectors

Using several bijectors

In [35]: [f = tfb.Square() # This is a bijector ‘ _ o
f.forward(Z.O) #4 In [39]: chain = tfb.Chain([tfb.Square(), tfb.Square()], name="x4")

N chain. forward(2.0)
f.inverse(4.0) #2
Out[39]: <tf.Tensor: id=1174, shape=(), dtype=float32, numpy=16.0>

Out[35]: <tf.Tensor: id=974, shape=(), dtype=float32, numpy=2.0>

Doing the Transformation

In [27]: base_dist = tfd.Uniform(0.0,2.0)
mydist = tfd.TransformedDistribution(distribution=base dist, bijector=f)

In [36]: xs = np.linspace(0.001, 5,1000)
ps = mydist.prob(xs)
plt.plot(xs,ps)
plt.xlabel('x")
plt.ylabel('p(x)")
plt.ylim(0,1)

Out[36]: (0, 1)

1.0

0.8

0.6

p(x)

0.4 1

Notebook Flow_101.ipynb

0.2 4

0.0

Learning to flow

' fl zO @ ‘fz Z;_ 1) @fz+1 Z,,,

N - -

Zg ~ Po(zo) Z; ~ pz(zi) Zg ~ PK(ZK)

of i
logp(x) = logp(zx) = logpo(zo) — X log (d t‘ afl]

) with 7 = fi(zi-1)

The log-probability log p(x) of a training sample x can be easily calculated from the
Jacobian and the logp,(z,). You get z, by successively applying the reversed

functions f;*

How to fit? so that (observed) data is most likely!

27

Learning to flow

‘ fl(zO) @ ‘fz Z;— 1 @fz-}—l(zz

Zg ~ Po(Zo) Z; ~ pz(zz) Zg ~ pK(ZK)

dfi(z;
log p(x) = logp(z) = logp,(zo) — 3 log (det | afzi(_zl)

) with 7 = fi(zi-1)

The log-probability log p(x) of a training sample x can be easily calculated from the
Jacobian and the logp,(z,). You get u, by successively applying the reversed

functions f;*

Maximum Likelihood: Minimize the Negative Log Likelihood —¥logp(x") of all
training data point xt. There parameters of the model, are in the transformations.

Simple example in NB Flow_101.ipynb -

Requirements for the bijectors

A flow is composed of serval possible different f’s, the bijectors in TFP
language. The following restrictions apply for them

* fneeds for be invertible (strict requirement)

* Training
— Fast calculation of f~1(x)
— Fast calculation of Jacobi-Determinant

« Application:
— Fast calculation of f(2)

29

Flows with networks

Flows using networks

2 Main lines of research

Guided by autoregressive (AR) models

— Al AR models like Wavenet can be understood as normaliuing flows
» Mask Autoregressive Flow (MAF)
» Inverse Mask Autoregressive Flow (IMAF)

Using ‘handcrafted’ network based flows
— NICE (1410.8516 Dinh, Krueger, Bengio)
— RealNVP (1605.08803 Dinh, Dickstein, Bengio)

— Glow (https://arxiv.org/abs/1807.03039 Kingma, Dahriwal) "

Unifying framework (Triangular Maps)
— SOS paper ICML https://arxiv.org/abs/1905.02325

33

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1905.02325

Requirement / Design considerations

 Fast calculation of f(2), f~1(x)

* Crucial: We need fast calculation of Jacobi Matrix
-1 dfi(z) 0fi(z) 0f1(2)
- ‘det (%) 0z, 0z, 0z3 \
df2(z) 0f,(z) 0f2(2)
0z, 0z, 075
df3(z) 0df3(z) 0f3(2)
0z, 0z, 0z /

« Lin. Alg.: The determinant of triangular matrix is sum of diagonal terms (trace)
0f1(2) o~

Z3
* D> f1(2) = f1(z1, 2522), fa(2) = f1(Z1r v Zd, ZaETs Za_-|=,4_)
« Diagonal terms 05(2) easy to be calculated (no network!)

0z,

« Want triangular matrix

df>(2)

0z,

no restrictions, can be as complicated as hell (neural network)

Real-NVP (coupling layer)

« Main ingredient the coupling layer
« Consider (high) dimensional data with dimension D

Tda1:D = Ug+1:D * exploger.p) +
transformed
distribution | X | Xy |« X4 [X, || Xg
3
‘ i
base
distribution | U, | U, || U, Ju,, [~| Yp Z->U

« Choose arbitrary d<D a;(z,.4) and u;(z;.;) are NNs with inputs z, ... z; and outputs for
d+1,..,D.

* X1 =2Z; X9=1Zy.. Xq=Zg4
o Xgyq1 = U;j(z1.9) + exp(ai(zl:d)) -Zy+1 # shift and scale transformation
o #xg01 ~ N =p(z1.9), 0 = exp(a;(z1.4))) renormalisation trick

* Xgiz2 = Miy1(Z1.q) T exp(@;41) * Zgyo,

* In short X1:d = Z1:d and Xd:p = .ui:i+d(Z1:d) + exp(ai) "Zd4:p

Figure credit Eric Jang 35

Real-NVP (coupling layer, properties)

transformed
distribution
Inverse
* Z1.4 = X1p No network
* Z1g = X1p
* Xd+1:p — U (Zl:d) + eXp(ai(Zl:d)) *Zd+1:D bace
° Zd+1:D — (xd+1:D — ‘LL (Zld))/exp(al(zld))) distribution
Jacobian for D=5, d=2 note that 2212 = 2%
aZj 6Z]
) P>
1 0 0 0 0
0 1 0 0 0
i e e exp(ai(z1:2)) 0 0
€ € € exp(a;(z1:2)) 0
’ ¢ ¢ € € exp(as(z1.2))
d d J. P 3
9z, 0z, 975 oz -

e=don’t care

Tda1:D = Ug+1:D * €XP(Ogs1.0) +

x1 xz xd xd+1 xo

F
‘ i
ul uz - ud l.,ld+1 - U
Z->U
X1 =2
X2 = 2

x3 = pi(z1.2) + eXp(“i(Z1:2)) " Z3
x4 = pi(z1:2) + exp(ai(zm)) " Zy

x5 = pi(z1.2) + exp(a;i(z12)) - zs

MORE
LAYERS

Do the DL-Trick

44

Stack more Layers (Permutation)

* In RealNVP
— d is arbitrary and also the ordering
— In AR-Flows ordering is arbitrary
* When stacking several coupling layers put fixed permutation of
dimensions in between

» Fix permutation is invertible and det=1 (If a bijection)

. ' Li41:D = Ug41:D * €xXplogsr.p) +
Couplln‘g Layer oetormed |, | x, || x, []-
Permutation | ‘Tj

) ‘ base
COUpllng Layer distribution | U, | U, || u, |u,,, |~

\

45

Demo

See Flow _101_learning_parameters_ NVP

Z ~ N(0,1) X ~ Complicated

-
-

"N

|
=

I
S
=
N R

000 025 050 075 100

Glow for image data
--arXiv:1807.03039

Glow: Generative Flow
with Invertible 1 x1 Convolutions

Diederik P. Kingma“, Prafulla Dhariwal®
OpenAl, San Francisco

47

Specialties of glow

Use 1x1convolutions instead of Permutation

Image Data

Multiscale Architecture (also in RealNVP Paper)

X and Z are now tensors (3 dimensional, shape w,h,c)

Keep the w,h dimension work on the channel dimension

The channel dimension get’s larger by squeeze operation (see below)
As before (Affine coupling layer now with tensors)

48

Glow (new incredients)

Multiplication)
« They stack 32 of those layers

affine coupling layer

t

invertible 1x1 conv

?

actnorm

T
|

(a) One step of our flow.

Additional actnorm (like a batchnorm for batch siue 1)
Instead of a permutation 1x1 convolution is used (simple Matrix

Actnorm.
See Section E

Vi,j:yi; =SSO, +b

Invertible 1 x 1 convolution.
W : [c X]
See Section’3.2.

Vi,j . Yi,j = Wxi,j

50

Multiscale Architecture

(128,128,6)

x K x (L—1)

Squeeze operation:

— s,8,c 2 s/2,s/2,4*c @

— Reduces the spatial resolution step of flow <K

— Keeps the number of entries fixed 3

squeeze
Split operation =(128,1268.6) 4

— Splits input tensor in two halves @4_ .

— 50% of the variables only observe ¥ (128.128.12)
one flow. T_hese correspond to fine ——
grade details. K (128 1212

— The rest is squeezed and thus T
describes finer details B

— L =06 in paper
(256,256,3)

51

Multiscale Architecture

» Shapes of the Z @
step of flow x K
° for i,e in enumerate(eps_shapes):
print('z_{}'.format(i+l),e) f
) z_1 (128, 128, 6) Squeeze
2 (64, 64, 12 A
::3 :32, 32, 24; 21=(128,128,6) (128,128,6)
z 4 (16, 16, 48) @ e e
z5 (8, 8, 96) pil
z 6 (4, 4, 384) 4 (128,128,12)
step of flow x K x (L—1)
4 (128,128,12)
z — (256,256,3) squecze
(256,256,3)

52

Demo

Network has been trained on CelebA-HQ
— 30000 (256x256x3) images of celebrities
— Images have been aligned

Sampling: draw 256*256*3 numbers from N(0,1)
— Reduced Temperature draw from N(0,T*1)

Interpolation
— Blackboard

Demo
— Uses pretrained network
— fun_with_glow

53

Further reading

Some interesting reads and talks

Eric Jang
— Blog: part1 (introduction) part2 (modern flows) Coming soon

— 2019 ICML Tutorial

Priyank Jaini
— Lecture Waterloo University CS 480 680 8/24/2019 lecture 23 (slides |
youtube)
— SOS paper ICML (https://arxiv.org/abs/1905.02325) Talk

Arsenii Ashukha
— Lecture at day 3 at deepbayes.ru summer school 2019 (slides | video)

Papers (relevant to this talk)
— Density estimation using Real NVP: https://arxiv.org/abs/1605.08803

— Glow: Generative Flow with Invertible 1x1 Convolutions
https://arxiv.org/abs/1807.03039

o4

https://blog.evjang.com/2018/01/nf1.html?m=1
https://blog.evjang.com/2018/01/nf2.html
https://slideslive.com/38917907/tutorial-on-normalizing-flows
https://cs.uwaterloo.ca/~ppoupart/teaching/cs480-spring19/slides/cs480-lecture23.pdf
https://www.youtube.com/watch?v=3KUvxIOJD0k&feature=youtu.be
https://arxiv.org/abs/1905.02325
https://youtube.videoken.com/embed/e9a-J0QALhI?tocitem=2
http://deepbayes.ru/
https://github.com/bayesgroup/deepbayes-2019/tree/master/lectures/day3
https://www.youtube.com/watch?v=v4gp1dMvWJo&list=PLe5rNUydzV9QHe8VDStpU0o8Yp63OecdW&index=15&t=0s
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://www.manning.com/books/probabilistic-deep-learning-with-python?a_aid=probabilistic_deep_learning&a_bid=78e55885

Thank you! Questions?

Further use of flows

It's possible to use normaliuing flow as a drop-in replacement for
anywhere you would use a Gaussian, such as VAE priors [evjang]

. _~p(z|x)

logp(X) = L(X,0) + KL(qe(2 |) || p(2 | x)) .

Variational Family ¢
All probability distributions

g(ulx) is network parameteruing
Gaussian

Use NF to make this more expressive

,» 3

56

https://blog.evjang.com/2018/01/nf1.html?m=1

Material to check

Tutorial on normaliuing flows, slideslive.com/38917907/tutorial-on-
normaliuing-flows

e Tips for Training Likelihood Models,
blog.evjang.com/2019/07/likelihood-model-tips.html

e FFJORD tutorial, https://youtu.be/ ALACSSVYkw
e Must read papers:

o Variational Inference with Normaliuing Flows,
https://arxiv.org/abs/1505.05770

o Density estimation using Real NVP, https://arxiv.org/abs/1605.08803

o Glow: Generative Flow with Invertible 1x1 Convolutions
https://arxiv.org/abs/1807.03039

o Sylvester Normaliuing Flows for Variational Inference,
https://arxiv.org/abs/1803.05649

o FFJORD: Free-form Continuous Dynamics for Scalable Reversible
Generative Models, https://arxiv.org/abs/1810.01367

o Do Deep Generative Models Know What They Don't Know?,
https://arxiv.org/abs/1810.09136

o Classification Accuracy Score, https://arxiv.org/abs/1905.10887

Y

