gilleskratzer.netlify.com

DATALAB BROWN BAG SEMINAR, ZHAW 30.05.2018

GILLES KRATZER, APPLIED STATISTICS GROUP, UZH

- Motivational examples
- Elements of graph theory/probability theory
- Bayesian Network Learning
 - Constraint-based algorithms
 - Score-and-search
- Causal versus acausal thinking
- Real-data applications using R

MOTIVATIONAL EXAMPLE: CREDIT CARD FRAUD DETECTION PREDICTION

Credit Card Fraud Detection Using Bayesian and Neural Networks

Sam Maes Karl Tuyls Bram Vanschoenwinkel Bernard Manderick

Vrije Universiteit Brussel - Department of Computer Science Computational Modeling Lab (COMO)

Pleinlaan 2

B-1050 Brussel, Belgium

 $\{sammaes@, ktuyls@, bvschoen@, bernard@arti.\}vub.ac.be$

Abstract

This paper discuss tection by means of digitalization, great importance two machine learn ing under uncertai

experiment	$\pm 10\%$ false pos	$\pm 15\%$ false pos
ANN-fig 2(a)	$60\% { m true pos}$	70% true pos
ANN-fig 2(a)	$47\% \mathrm{truepos}$	58% true pos
ANN-fig $2(c)$	$60\%~{ m true}~{ m pos}$	70% true pos
BBN-fig $2(e)$	$68\%~{ m true}~{ m pos}$	74% true pos
BBN-fig $2(g)$	$68\%~{ m true}~{ m pos}$	74% true pos

process of learning, ble to correctly classeen before as fraudome features of that

s as follows: first we main of credit card and 4 we briefly ex-

Table 1: This table compares the results achieved with ANN and BBN, for a false positive rate of respectively 10% and 15%.

MOTIVATIONAL EXAMPLE: VETERINARY EPIDEMIOLOGY DATA VISUALISATION

Contents lists available at SciVerse ScienceDirect

Preventive Veterinary Medicine

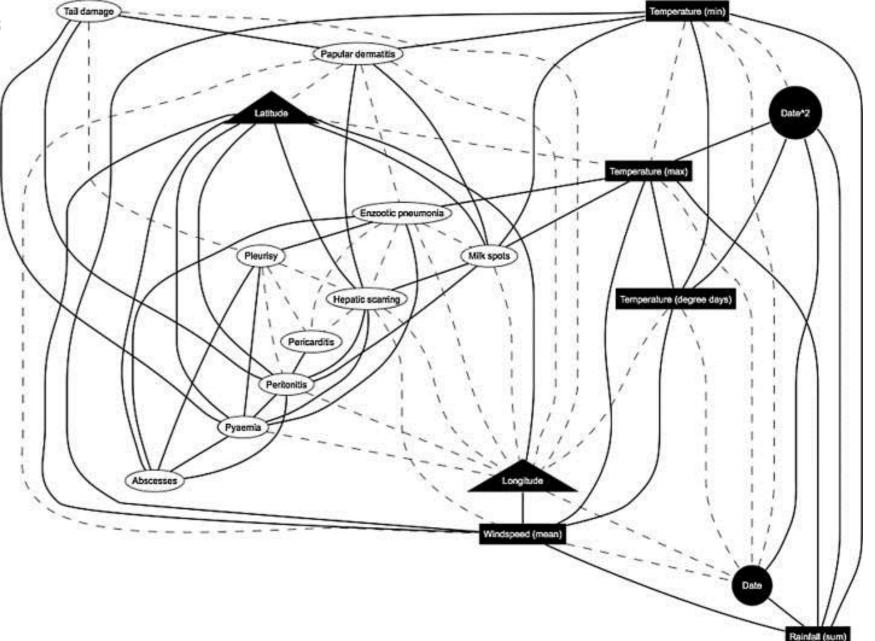
journal homepage: www.elsevier.com/locate/prevetmed



Using Bayesian networks to explore the role of weather as a potential determinant of disease in pigs

B.J.J. McCormick^a, M.J. Sanchez-Vazquez^b, F.I. Lewis

^a Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
 ^b OIE Organisation Mondiale de la Santé Animale, 12, rue de Prony, 75017 Paris, France
 ^c Section of Epidemiology, University of Zurich, Zurich, Switzerland



MOTIVATIONAL EXAMPLE: SOCIAL SCIENCES DATA INTERPRETATION

Discovering complex interrelationships between socioeconomic status and health in Europe: A case study applying Bayesian Networks

Javier Alvarez-Galvez^{a, b, *}

^a Loyola University Andalusia, Department of International Studies, Campus de Palmas Altas, Faculty of Political Sciences and Law, Seville 41014, Spain

^b Complutense University of Madrid, Department of Sociology IV (Research Methodology and Communication Theory), Campus de Somosaguas, Faculty of Political

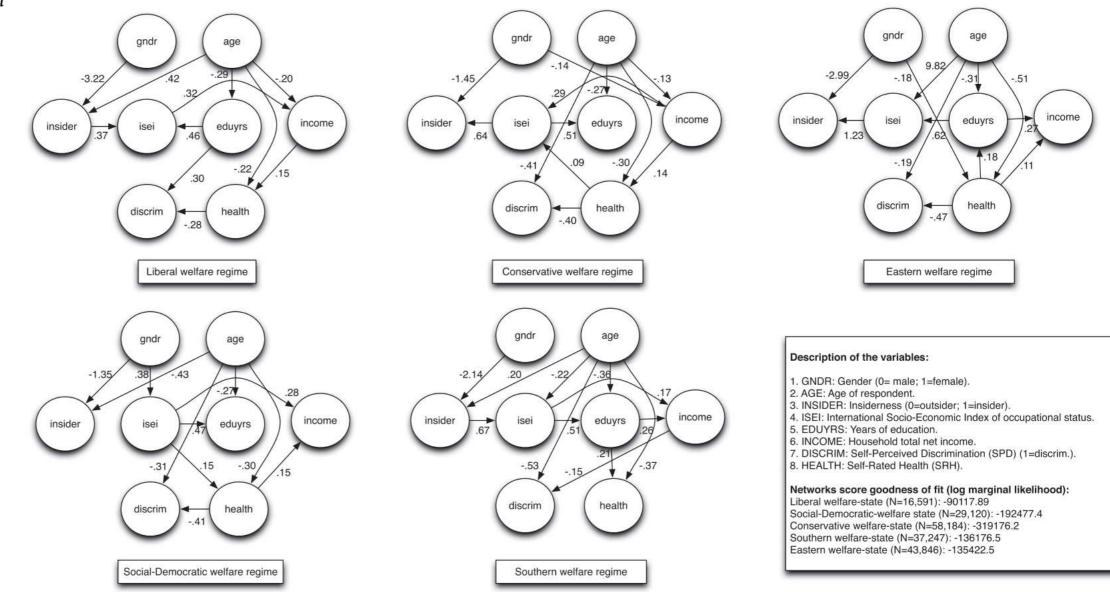
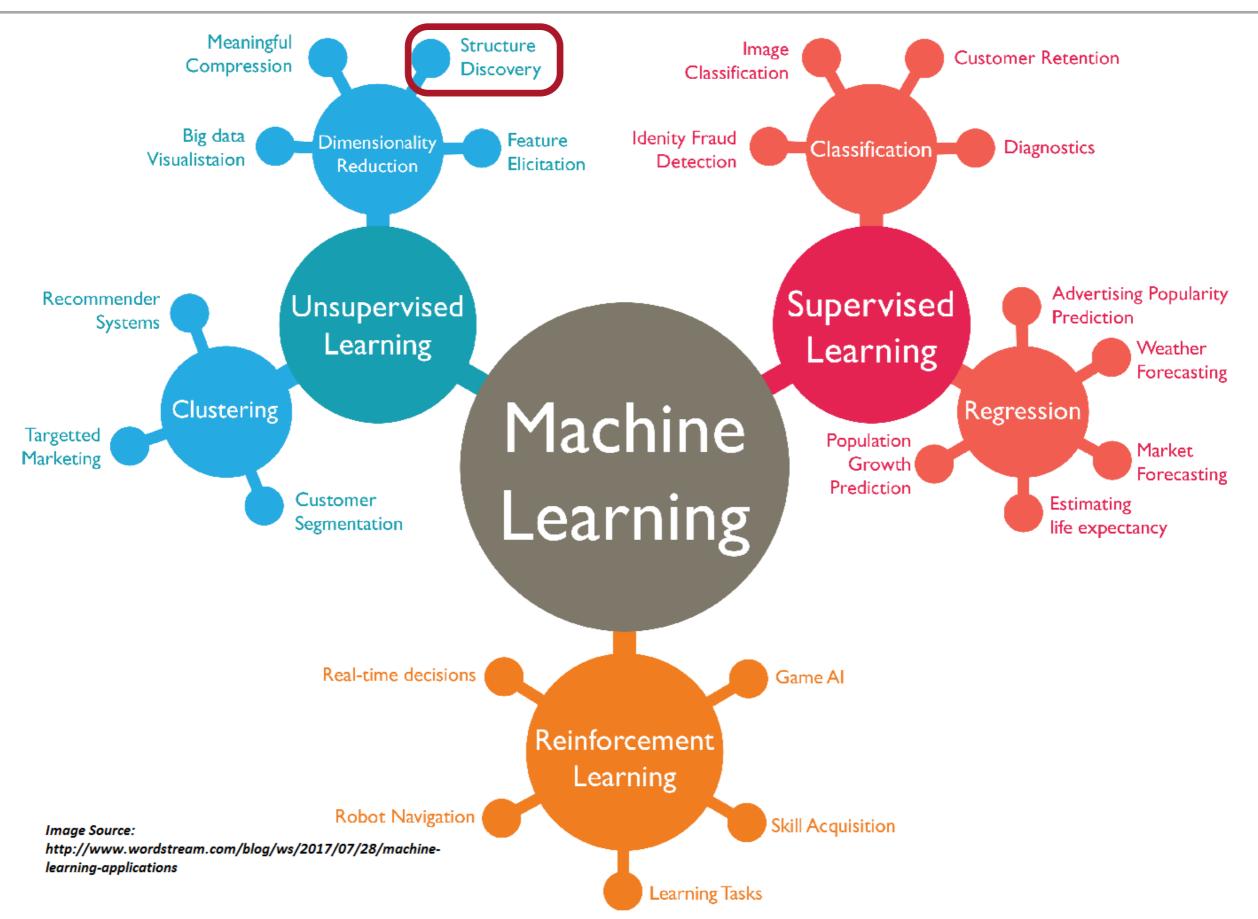


Fig. 1. Bayesian networks describing interrelationships between SES and health in five European welfare states.

BAYESIAN NETWORKS IN THE MACHINE LEARNING WORLD



Bayesian Networks are defined by two elements:

Network structure:

Directed Acyclic Graph (DAG): G = (V, A)

in which each node vi ∈ V corresponds to a random variable Xi

Probability distribution:

Probability distribution X with parameters Θ , which can be factorised into smaller local probability distributions according to the arcs aij \in A present in the graph.

A BN encodes the factorisation of the joint distribution

$$P(\mathbf{X}) = \prod_{j=1}^{n} P(X_j | \mathbf{Pa}_j, \Theta_j), \text{ where } \mathbf{Pa}_j \text{ is the set of parents of } X_j$$

The conditional probability of A given B is:

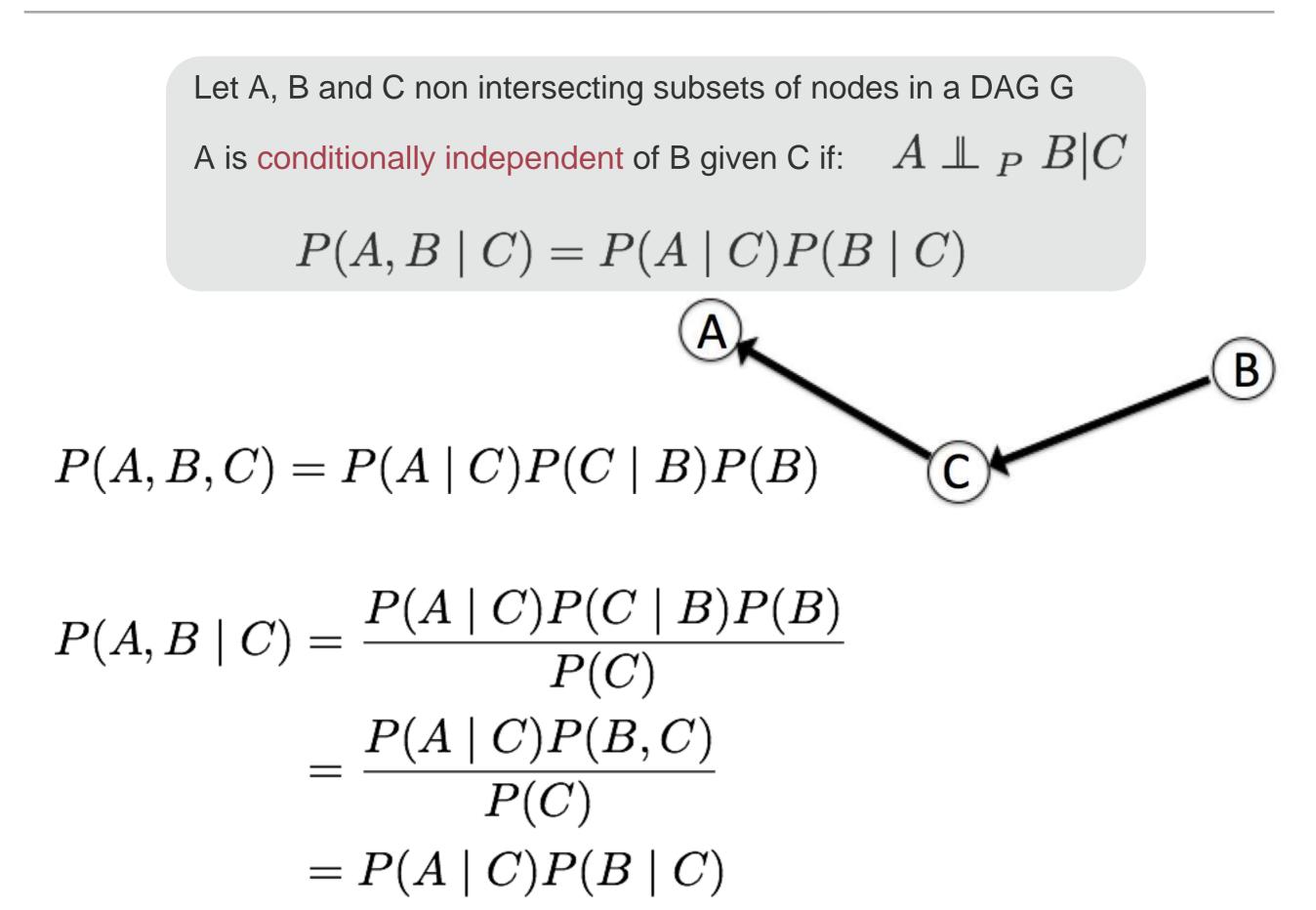
$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

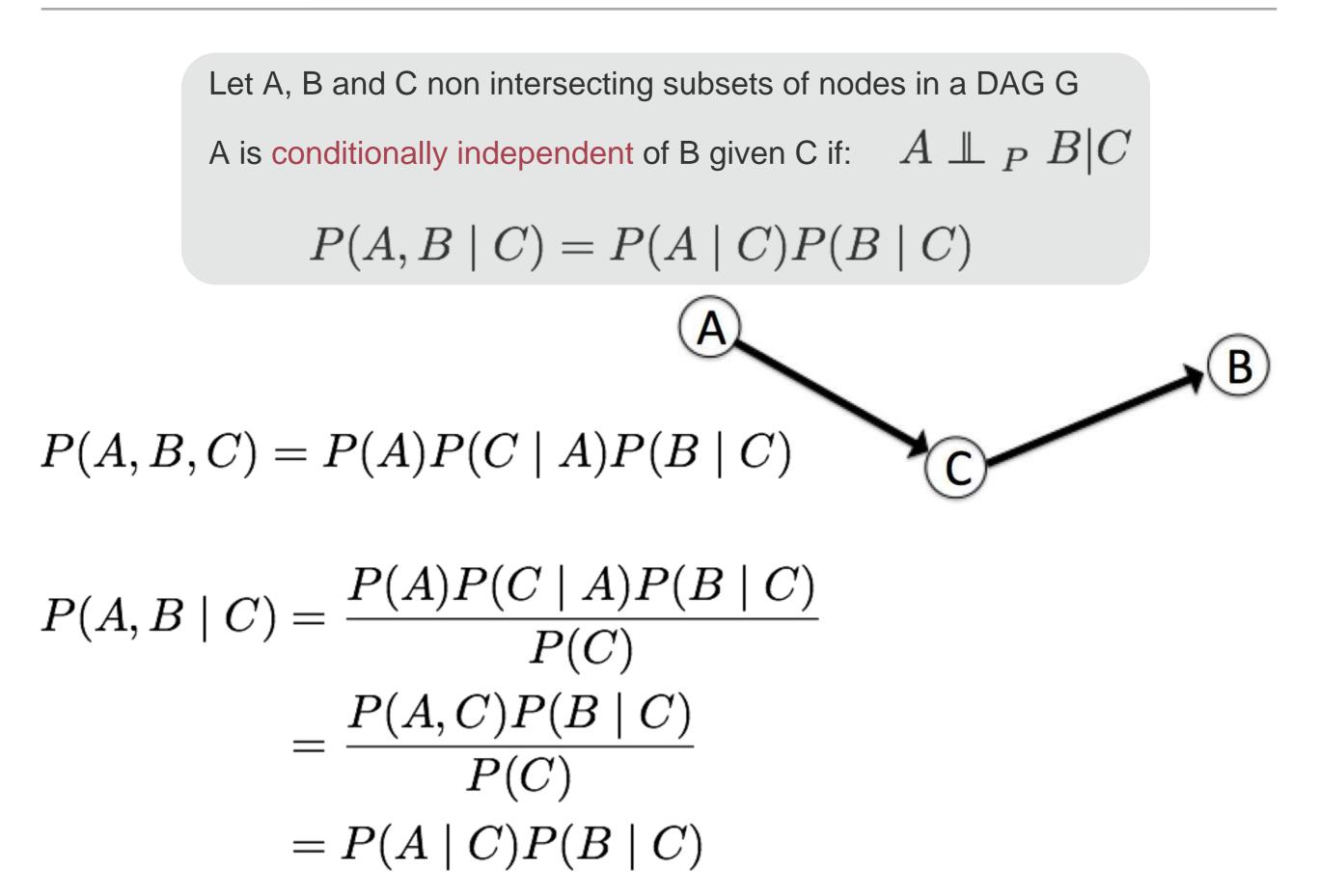
Bayes theorem:
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

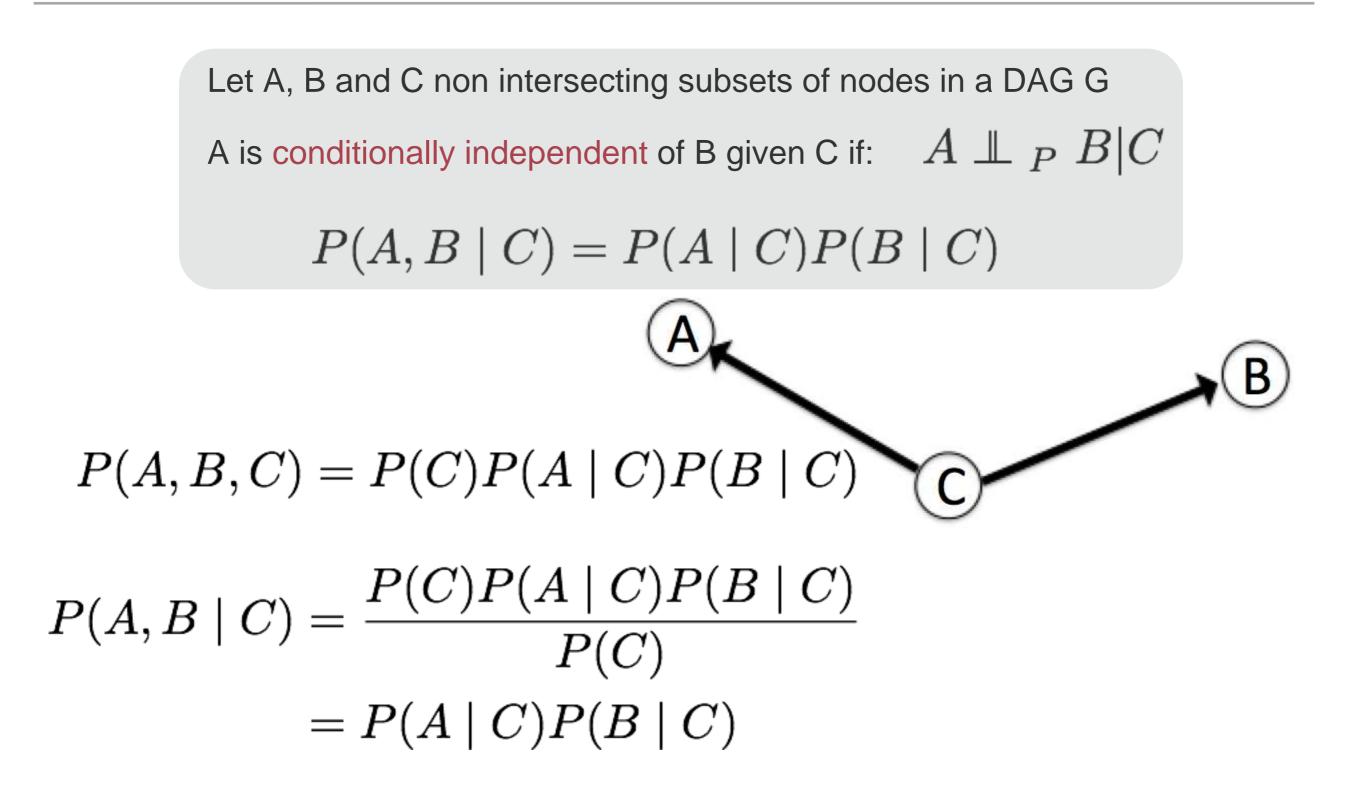
Let A, B and C non intersecting subsets of nodes in a DAG G

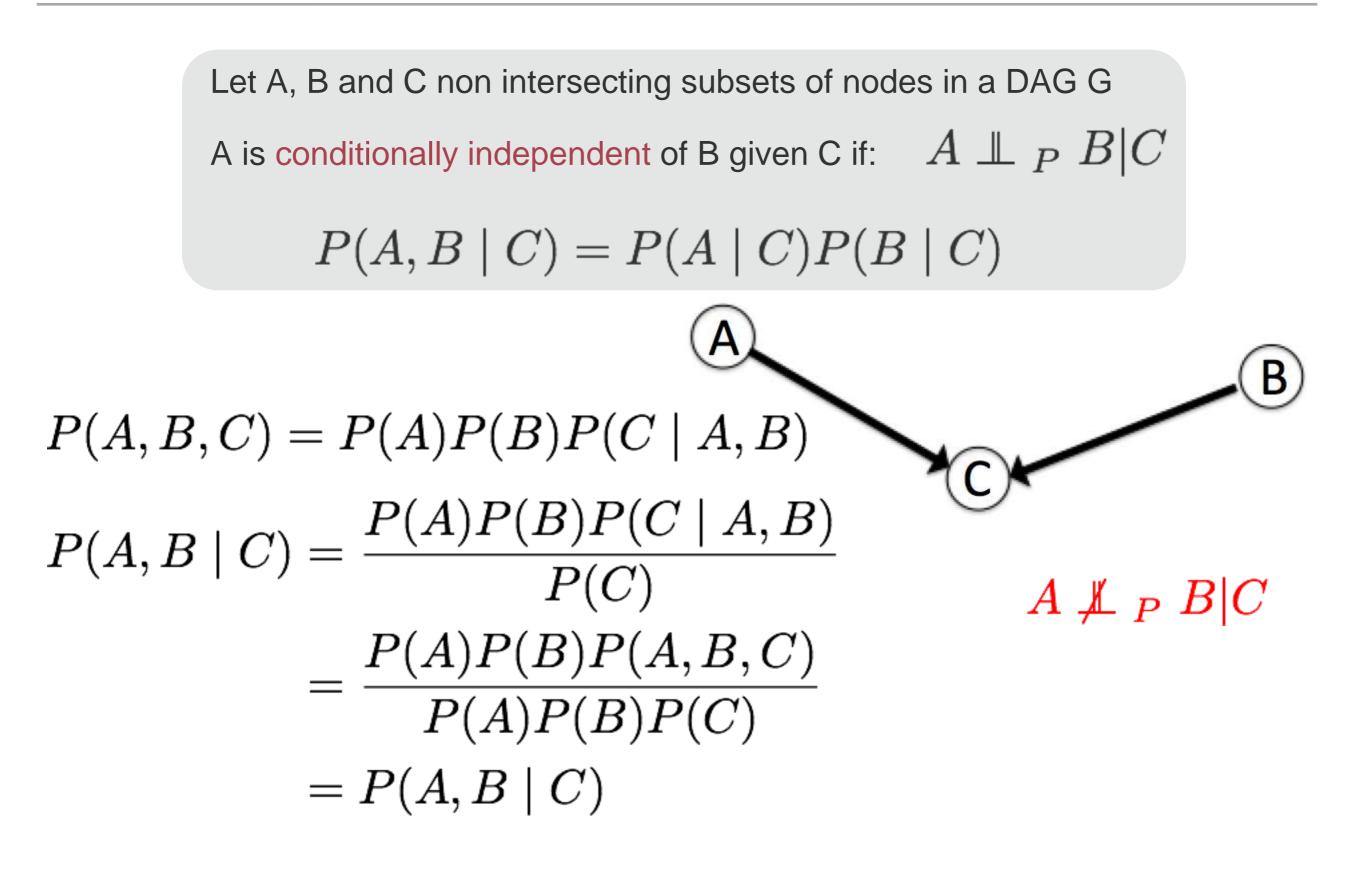
A is conditionally independent of B given C if: $A \perp _P B | C$

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

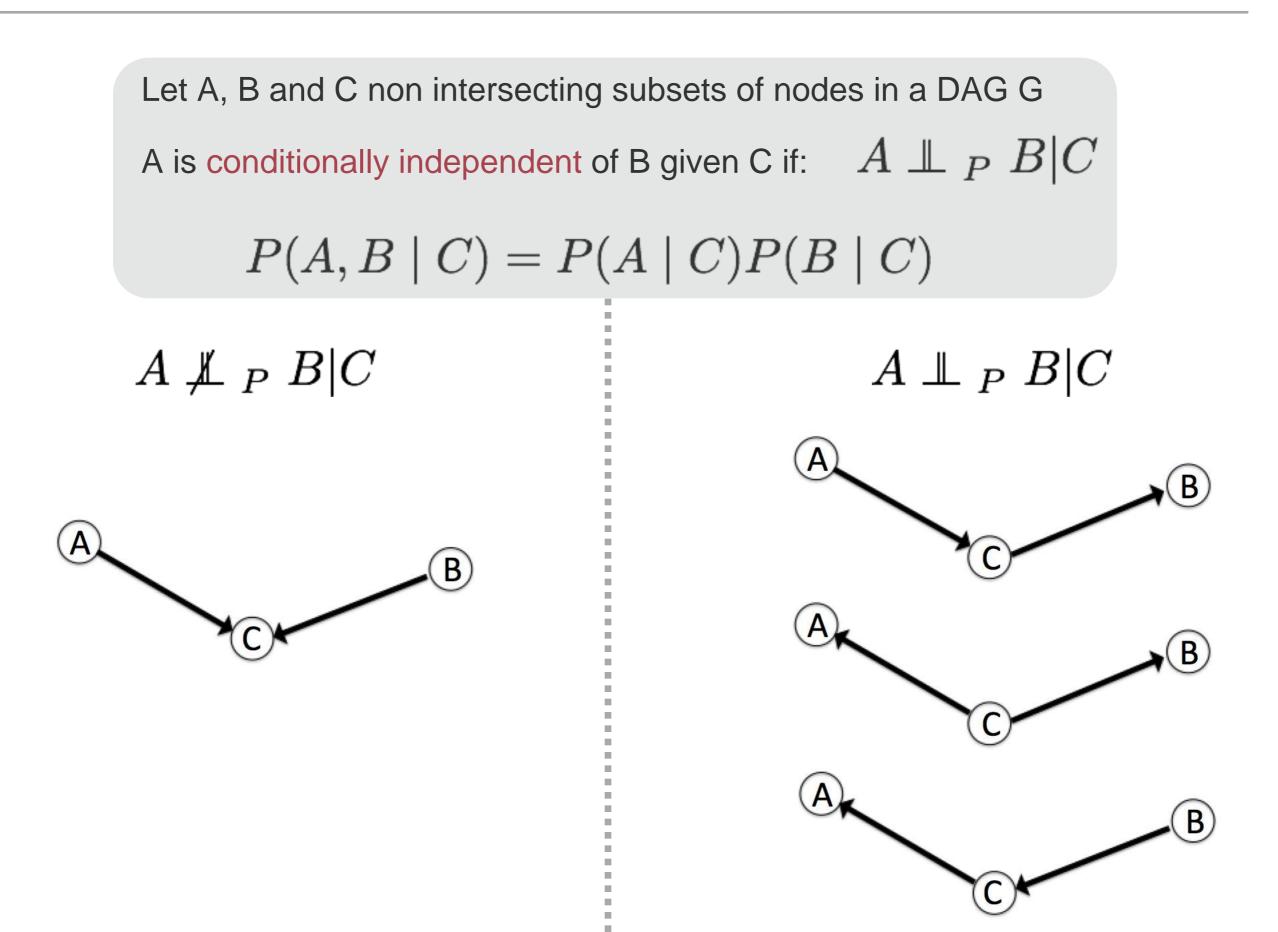




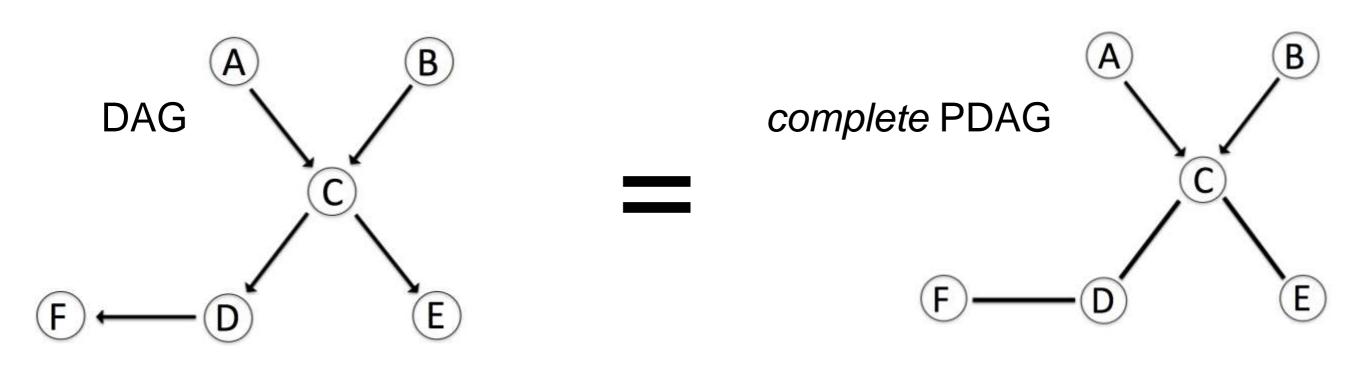




ELEMENT OF GRAPH THEORY



- In a practical perspective, for observational data, if learning algorithms rely on probabilistic learning algorithm. Then one can learn up to the Markov equivalence class.
- Markov equivalence class are the set of DAGs that have the same skeleton and vstructure.



A path from A to B is blocked if it contains a node s.t. either LEARNING BAYESIAN NETWORKS

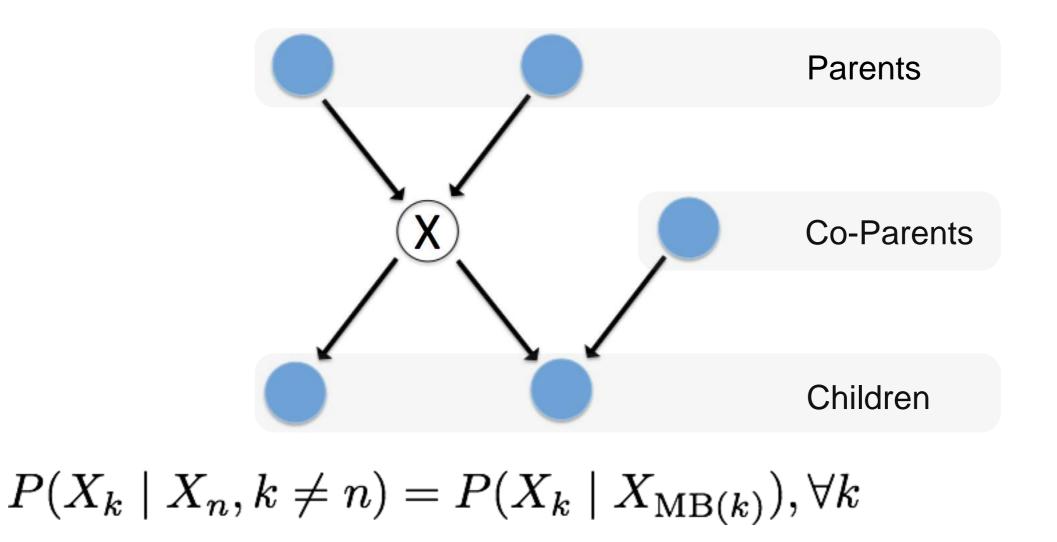
- the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
- the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are C.

If all paths from A to B are blocked, A is said to be d-separated from B by C.

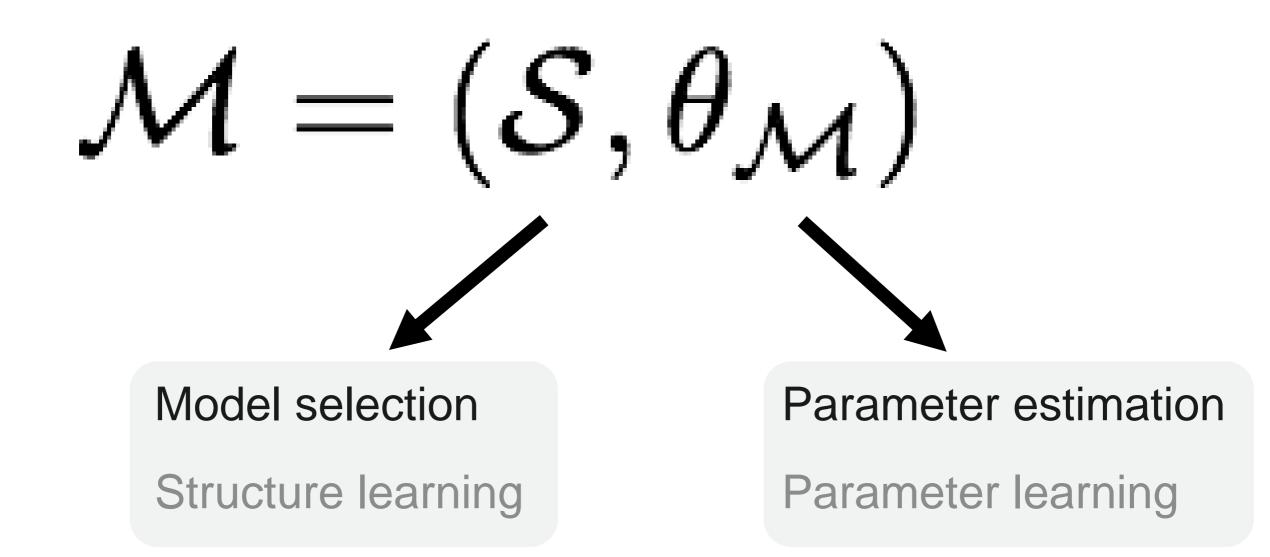
Theorem (Verma & Pearl, 1988): A is d-separated from B by C if, and only if, the

joint distribution over all variables in the graph satisfies:

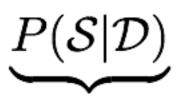
The Markov Blanket of a node is the set of parents, co-parents and children.



The Markov Blanket of a node is the set of nodes that shields the index node from the res



 $P(\mathcal{M}|\mathcal{D}) = \underbrace{P(\theta_{\mathcal{M}}, \mathcal{S}|\mathcal{D})}_{\mathcal{D}} = \underbrace{P(\theta_{\mathcal{M}}|\mathcal{S}, \mathcal{D})}_{\mathcal{D}}$

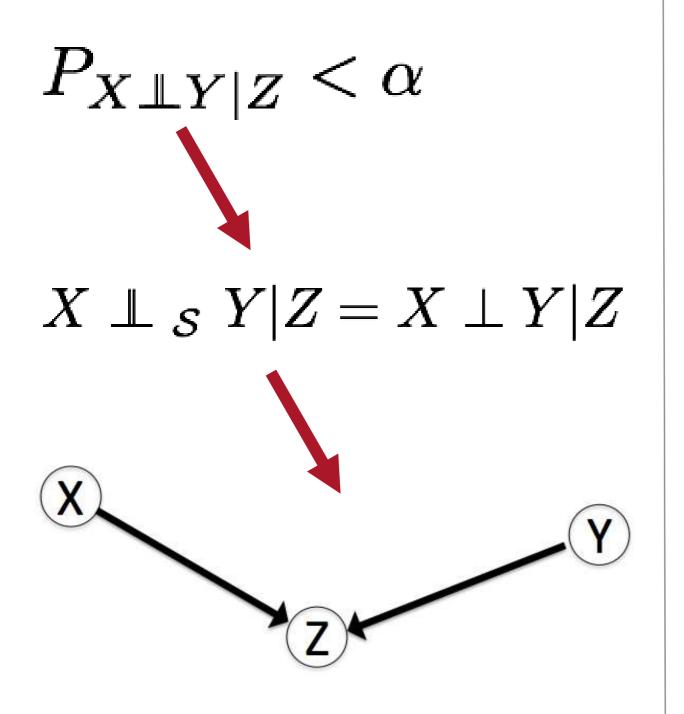


model learning parameter learning structure learning

	Fully Observed data	Missing data/hidden variables
Known graph structure	Easy Sample statistics	EM algorithm Gradient ascent Variational inference Doable
Unknown graph structure	Doable Search-and-score PC algorithm	Hard Structural EM

LEARNING BAYESIAN NETWORKS

Constraint based algorithms



Search-and-score algorithms

Maximum a posteriori score

$$G^* = \operatorname*{argmax}_G f(\mathcal{D}, G, n, \dots)$$

Example of scoring functions:

- Bayesian versus ML scores
 - log marginal likelihood
 - Bayesian-Dirichlet (BDeu, BDs, BDe)
 - Bayesian Information Criterion (BIC)

Constraint-based algorithms

- Inductive Causation (IC): (Verma and Pearl, 1991)
 - Provides a framework for learning the structure of Bayesian networks using conditional independence tests in three steps
 - A major problem of the IC algorithm is that the first two steps cannot be applied to any real-world problem due to computational complexity ...
- PC: first practical application of the IC algorithm (Spirtes et al., 2001)
 - backward selection procedure from the saturated graph
- Grow-Shrink (GS) (Margaritis, 2003)
 - Simple forward selection MB detection approach
- Incremental Association (IAMB): (Tsamardinos et al., 2003)
 - two-phase selection scheme based on a forward selection followed by a backward selection of the MB

 Conditional independencies in the distribution exactly equal the ones encoded in the DAG via d-separation

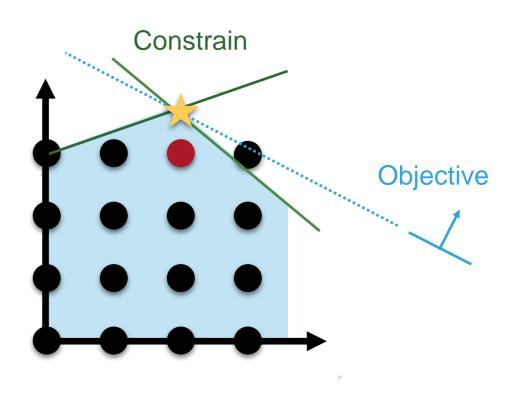
Causal sufficiency: no unmeasured common causes

In a pratical perspective:

- Testing mixture of data?
- Testing assumptions?

Score-and-search algorithms

- Heuristic approaches / Greedy search
 - Hill-climbing (with possibly random restarts/stochastics ...)
 - Tabu search (Glover, 1986)
 - Simulated annealing (Kirkpatrick et al, 1983)
 - Plus an entire zoo of methods …
- Exact search
 - Exact node ordering (Koivisto et al., 2004)
 - Learning with cutting planes (Cussens, 2012)



Scores

- Decomposability!
- Discrete BNs:
 - Bayesian-Dirichlet: BDeu (Heckerman et al. ,1995)
- Score equivalence for additive regression framework:
 - Bayesian based scores: not always score equivalent due to the prior!
 - Information theoretic scores: BIC asymptotically score equivalent

Counter example

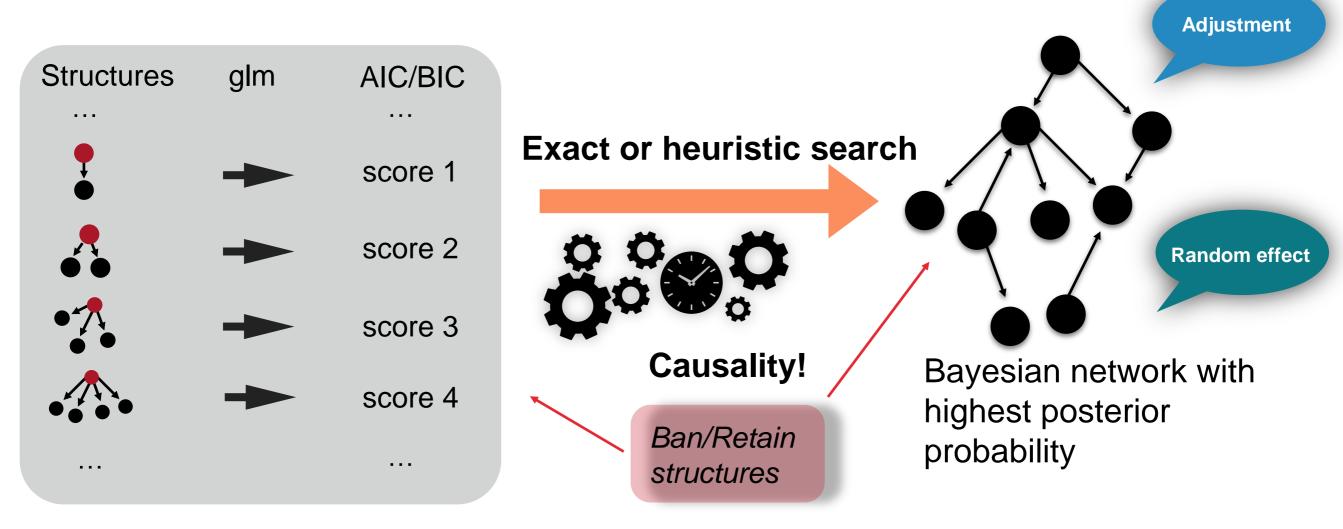
Maximum likelihood estimator ... return fully connected BN!

In a practical perspective:

- Scoring mixture of data?
- Score equivalence!

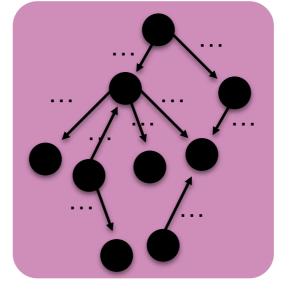
ABN

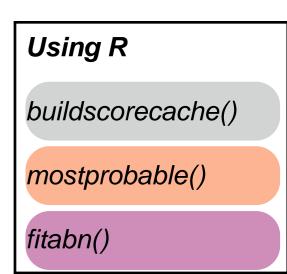
Search and score algorithm



Parameter estimation

- compute marginal posterior density
- regression estimate





- Strong assumptions ... but common in statistics, no?
- "It seems that if conditional independence judgements are byproducts of stored causal relationships, then tapping and representing those relationships directly would be a more natural and more reliable way of expressing what we know or believe about the world. This is indeed the philosophy behind causal Bayesian networks." (Pearl, 2009)
- The do-calculus
 - Interventions
 - In epidemiology: Randomised Controlled Trial
- So ... BN is a nice framework to treat causal and causal thinking

Popular R packages (available on CRAN)

bnlearn

Learning via constraint-based and score-based algorithms (many!)

pcalg

Robust estimation of CPDAG via the PC-Algorithm

deal

Learning BNs with mixed (discrete and continuous) variables

catnet

Discrete BNs using likelihood-based criteria

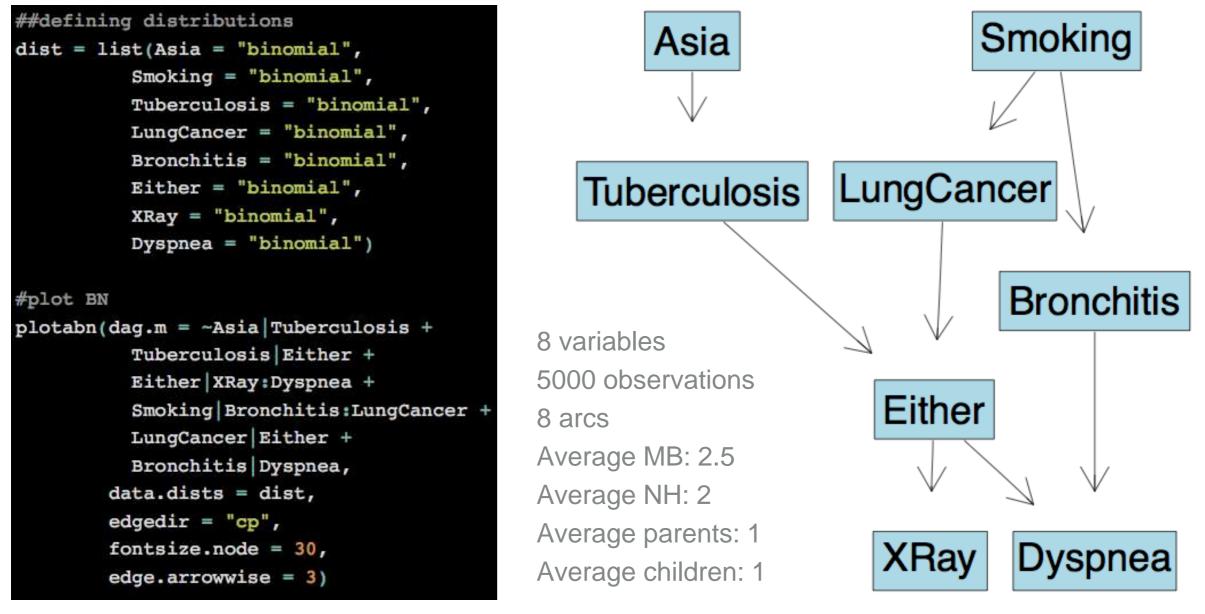
abn

- Learning BNs with mixed (discrete, continuous, Poisson) variables
- Score based methods: Bayesian and frequentist estimation
- Exact and heuristic search

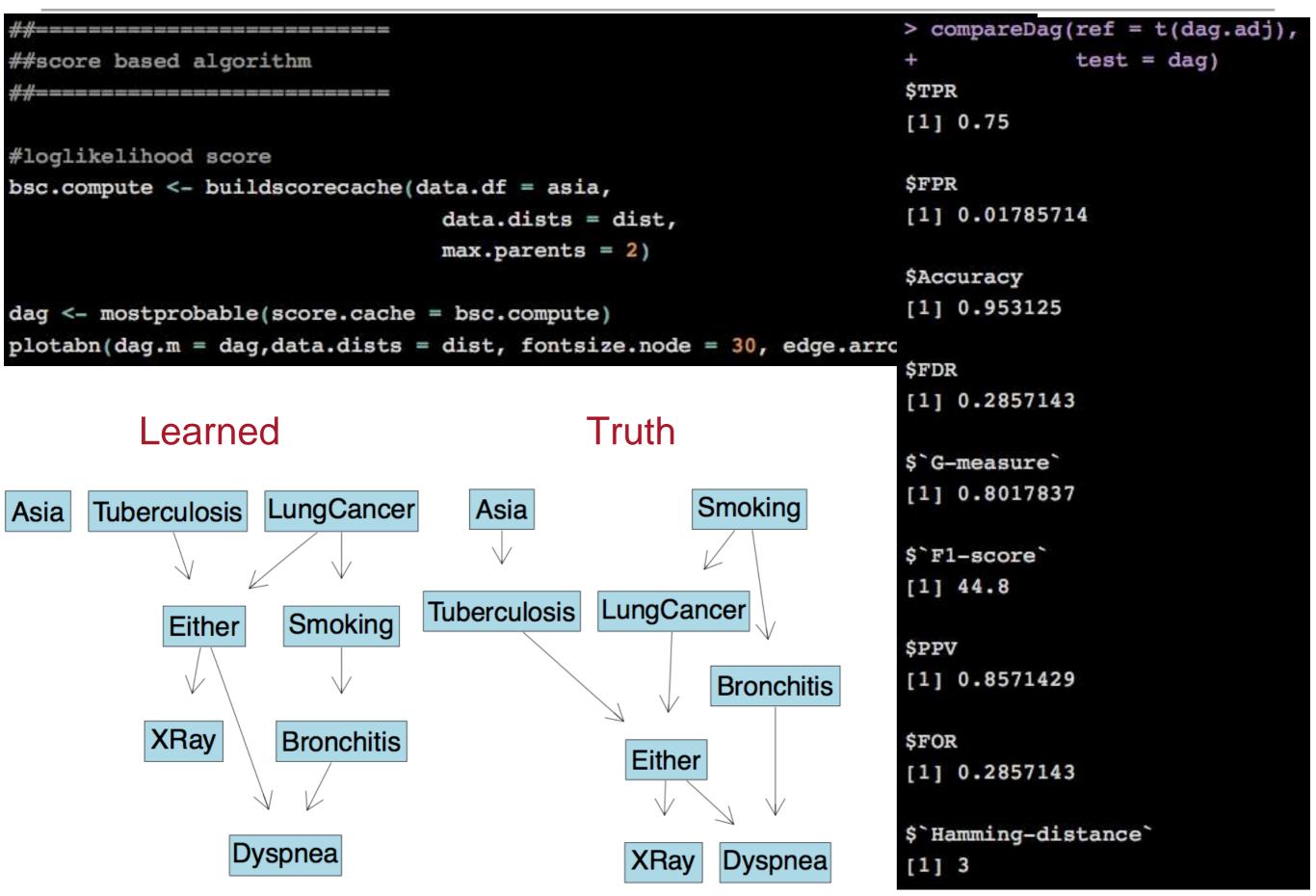
Disclaimer: I am author and maintainer of the abn R package. I will use it for the example part.

Proposed by Lauritzen et al., 1988 and provided by Scutari, 2009

"Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or none of them, or more than one of them. A recent visit to Asia increases the chances of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis. The results of a single chest X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea."



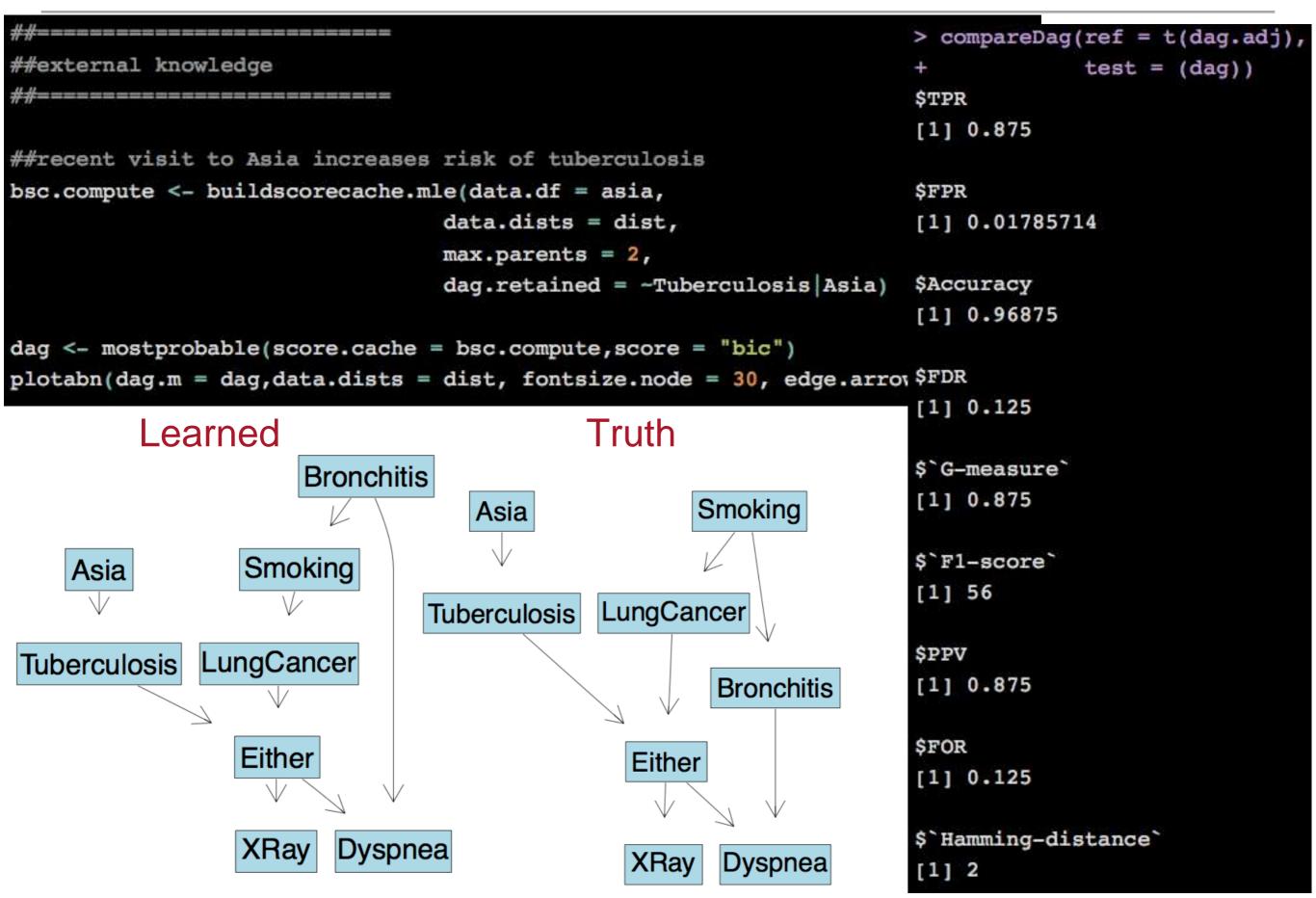
ASIA: SCORE BASED ALGORITHM



ASIA: KNOWN NETWORK

abn(dag.m = ~Asia Tuberculosis+	
Tuberculosis Either +	
Either XRay: Dyspnea +	
Smoking Bronchitis:LungCancer +	<pre>fitabn.mle(dag.m = dag.adj,data.df = asia,data.dists = dist)\$coe</pre>
LungCancer Either +	
Bronchitis Dyspnea, data.df = asia, data.dists = dist) \$modes	
\$Asia	\$Asia
Asia (Intercept) Asia Tuberculosis	Asia intercept Tuberculosis
-4.811200 1.765763	[1,] -4.811371 1.766849
\$Smoking	\$Smoking
Smoking (Intercept) Smoking LungCancer Smoking Bronchitis	Smoking intercept LungCancer Bronchitis
-1.027065 2.356988 1.807460	[1,] -1.027075 2.357079 1.807472
\$Tuberculosis	\$Tuberculosis
Tuberculosis (Intercept) Tuberculosis Either -12.22120 10.21823	Tuberculosis intercept Either [1,] -8.517393 6.516139
-12.22120 10.21823	[1,] -8.517393 6.516139
\$LungCancer	\$LungCancer
LungCancer (Intercept) LungCancer Either	LungCancer intercept Either
-12.07565 14.18547	[1,] -8.517393 10.62598
\$Bronchitis	\$Bronchitis
Bronchitis (Intercept) Bronchitis Dyspnea	Bronchitis intercept Dyspnea
-1.388644 3.200393	[1,] -1.388655 3.200415
\$Either	\$Either
Either (Intercept) Either XRay Either Dyspnea	Either intercept XRay Dyspnea
-8.656348 8.259773 1.538789	[1,] -8.665128 8.268402 1.539146
\$XRay	\$XRay
XRay (Intercept)	XRay intercept
-2.052496	[1,] -2.0525
\$Dyspnea	\$Dyspnea
Dyspnea (Intercept)	Dyspnea intercept
-0.1201444	[1,] -0.1201443

ASIA: EXTERNAL KNOWLEDGE



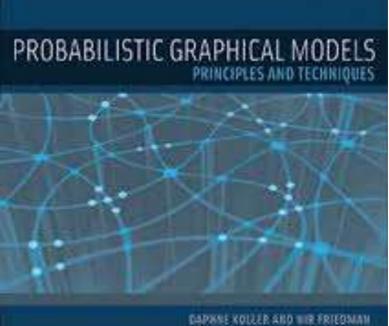
SELECTED BIBLIOGRAPHY



Bayesian Networks in R

with Applications in Systems Biology

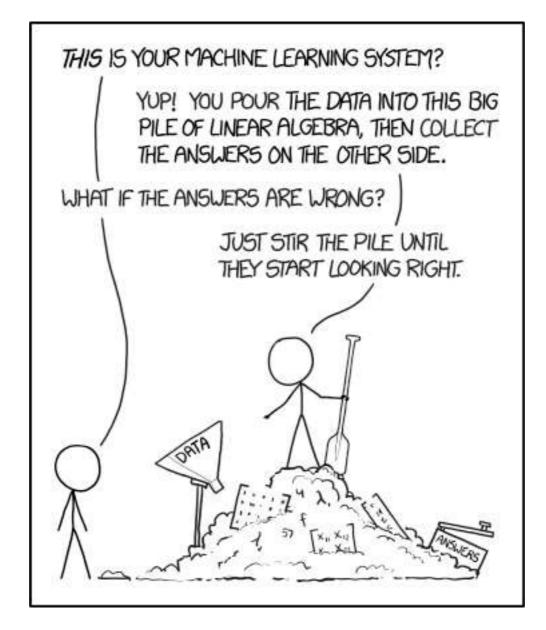
Graphical Models with R



Springer

2 Springer

Thank you for your attention



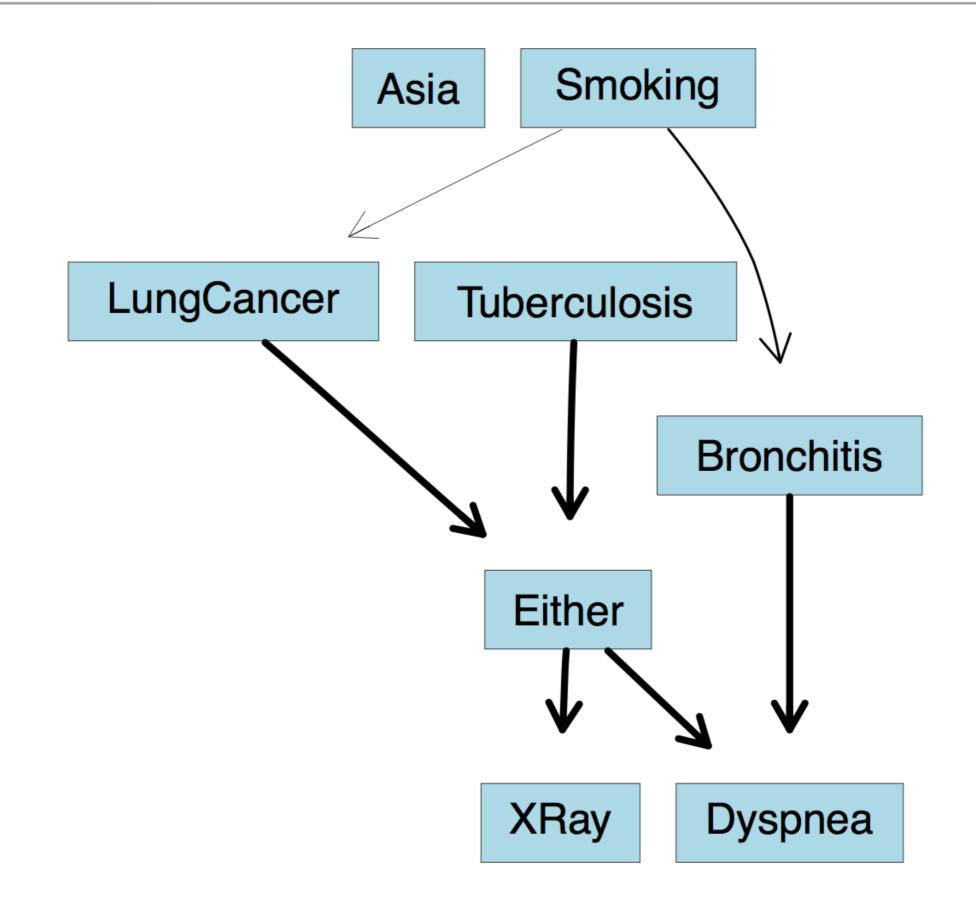
xkcd.com

Backup slides

ASIA: BOOTSTRAPPING

library(doParallel)


```
library(foreach)
cl <- makeCluster(2)
registerDoParallel(cl)
set.seed(1120)
nboot <- 200
nvars <- dim(asia)[2]</pre>
nobs <- dim(asia)[1]</pre>
bootstrap.dag <- array(data = NA, dim = c(nvars, nvars, nboot))
start_time <- Sys.time()</pre>
bootstrap.dag <- foreach(i = 1:nboot,.packages = c("mlabn", "abn")) %dopar% {</pre>
  mycache.computed.mle <- buildscorecache.mle(data.df = asia[sample(x = 1:nobs,size = 0.6*nobs,replace = FALSE),],
                                                                    data.dists = dist,
                                                                    max.parents = 2,
                                                                    dry.run = FALSE,
                                                                    maxit = 1000,
                                                                    tol = 1e-11)
  dag <- mostprobable(score.cache = mycache.computed.mle, score = "bic")}</pre>
compute_time <- Sys.time()-start_time
##analysis
df.boot <- array(data = unlist(bootstrap.dag), dim = c(8, 8, 200))
dag<-apply(df.boot, 1:2, mean)
#dag.mdl<-dag.before
colnames(dag) <- rownames(dag) <- names(dist)
dag.boot.50 <- dag
dag.boot.50[dag>0.5] <- 1
dag.boot.50[dag<=0.5] <- 0
dag[dag<=0.5] <- 0
colnames(dag.boot.50) <- rownames(dag.boot.50) <- names(dist)
plotabn(dag.m = t(dag.boot.50), data.dists = dist, fontsize.node = 30, arc.strength = 10*dag, digit.precision = 2, edge.arrowwise = 3)
```

ASIA: HOW MANY PARENT ARE NEEDED?

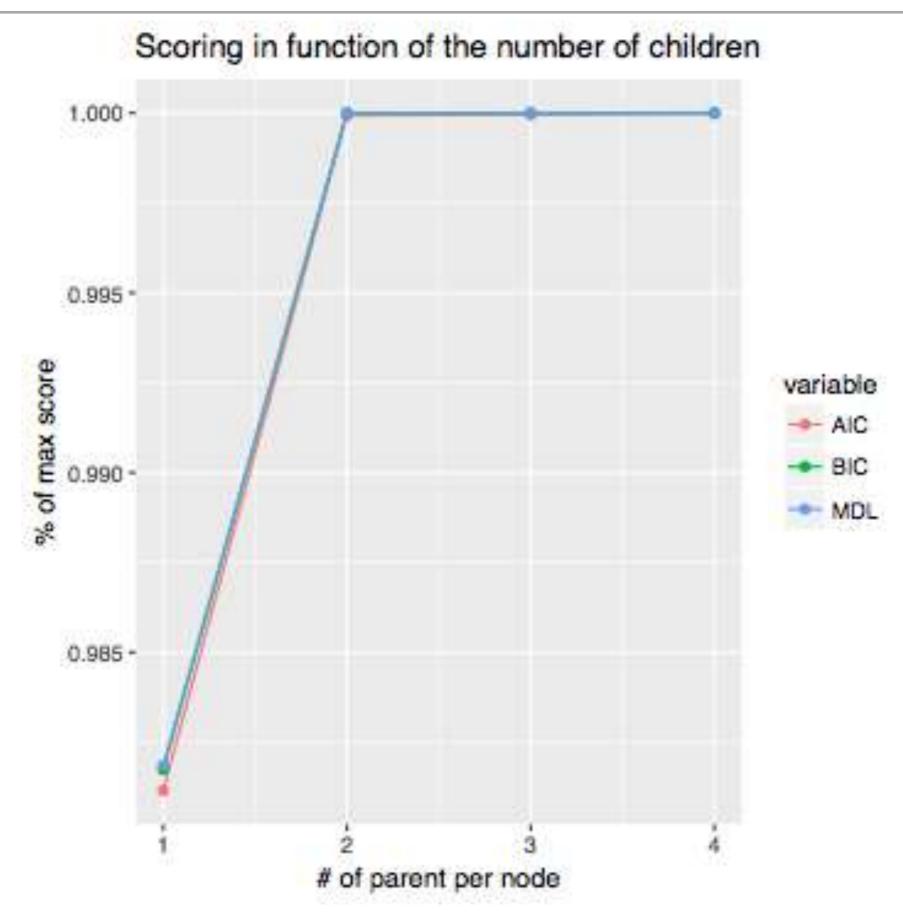
```
res.mlik <- NULL
res.aic <- NULL
res.bic <- NULL
res.mdl <- NULL
for(i in 1:4){
  mycache.computed.mle <- buildscorecache.mle(data.df = asia,
                                            data.dists = dist,
                                            max.parents = i,
                                            dry.run = FALSE,
                                            maxit = 1000,
                                            tol = le-ll)
  dag <- mostprobable(score.cache = mycache.computed.mle,score = "aic")
 res.aic <- rbind(res.aic,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$aic)
 dag <- mostprobable(score.cache = mycache.computed.mle,score = "bic")
 res.bic <- rbind(res.bic,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$bic)
 dag<-mostprobable(score.cache = mycache.computed.mle,score = "mdl")
 res.mdl <- rbind(res.mdl,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$mdl)
library(ggplot2)
library(reshape)
scoring <- data.frame(AIC = max(-res.aic)/-res.aic, BIC = max(-res.bic)/-res.bic, MDL = max(-res.mdl)/-res.mdl, 1:4)
scoring.long <- melt(scoring, id.vars="X1.4")</pre>
ggplot(data = scoring.long, aes(x=X1.4, y=(value), group=variable, color=variable)) +
 geom line() +
 geom point() +
 ggtitle("Scoring in function of the number of children", subtitle = NULL) +
 xlab("# of parent per node") +
 ylab("% of max score") +
```

University of

Zurich^{⊍z⊮}

```
scale_x_continuous(breaks=c(1,2,3,4,5,6,7))
```


ASIA: HOW MANY PARENT ARE NEEDED?



ASIA: CONSTRAINT-BASED LEARNING

