gilleskratzer.netlify.com

University of
Zurich™

GILLES KRATZER, APPLIED STATISTICS GROUP, UZH
DATALAB BROWN BAG SEMINAR, ZHAW 30.05.2018

BAYESIAN

NETWORKS
I EADNINC TN Ao




(U University of
L5 Zurich

OUTLINE L

v

Motivational examples

v

Elements of graph theory/probabillity theory

v

Bayesian Network Learning
» Constraint-based algorithms

» Score-and-search

v

Causal versus acausal thinking

v

Real-data applications using R



MOTIVATIONAL EXAMPLE: CREDIT CARD FRAUD DETECTION University of
PREDICTION

Credit Card Fraud Detection
Using Bayesian and Neural Networks

Karl Tuyls Bram Vanschoenwinkel
Bernard Manderick
Vrije Universiteit Brussel - Department of Computer Science
Computational Modeling Lab (COMO)
Pleinlaan 2
B-1050 Brussel, Belgium
{sammaes@ ktuyls@,bvschoen@,bernard@arti.}vub.ac.be

Sam Maes

experiment | +10% false pos | £15% false pos
Abstract [ANN-fig 2(a) | 60% true pos | 70% true pos || process of leaming,
This paper discuss A};X'ﬁg 2(5’) 47% true pos 58% true POS :Zéitﬁe(;gize;zl};rzfs:
tecti.m} b}.f means A:\'};_ﬁg 2(:;) 60% true poS 70% true pPOS ome features of that
;iejigilgéfit;igéi BB}:_ﬁg 2(6) 687% true bos 4% true bOS 5 as follows: first we
two machine leart BBX—ﬁg Q(g) 68% true POs 74% true POs main of cr;adit card

ing under uncertai

and 4 we briefly ex-

Table 1: This table compares the results achieved
with ANN and BBN, for a false positive rate of re-
spectively 10% and 15%.




MOTIVATIONAL EXAMPLE: VETERINARY EPIDEMIOLOGY
DATA VISUALISATION
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MOTIVATIONAL EXAMPLE: SOCIAL SCIENCES
DATA INTERPRETATION

Discovering complex interrelationships between

socioeconomic status and health in Europe: A case study

applying Bayesian Networks

Javier Alvarez-Galvez

2 Loyola University Andalusia, Department of International Studies, Campus de Palmas Altas, Faculty of Political Sciences and Law, Seville

41014, Spain

b Complutense University of Madrid, Department of Sociology IV (Research Methodology and Communication Theory), Campus de

Somosaguas, Faculty of Political

d, b,*

Social-Democratic welfare regime

Southern welfare regime

Eastern welfare regime I

Description of the variables:

1. GNDR: Gender (0= male; 1=female).

2. AGE: Age of respondent.

3. INSIDER: Insiderness (O=outsider; 1=insider).

4. ISEl: International Socio-Economic Index of occupational status.
5. EDUYRS: Years of education.

6. INCOME: Household total net income.

7. DISCRIM: Self-Perceived Discrimination (SPD) (1=discrim.).

8. HEALTH: Self-Rated Health (SRH).

Networks score goodness of fit (log marginal likelihood):
Liberal welfare-state (N=16,591): -90117.89
Social-Democratic-welfare state (N=29,120): -192477.4
Conservative welfare-state (N=58,184): -319176.2

Southern welfare-state (N=37,247): -136176.5

Eastern welfare-state (N=43,846): -135422.5

Fig. 1. Bayesian networks describing interrelationships between SES and health in five European welfare states.
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BAYESIAN NETWORKS IN THE MACHINE LEARNING WORLD

Meaningful

Compression Customer Retention

Structure Image
Discovery Classification

Big data Dimensionality Feature Idenity Fraud
Visualistaion Reduction Elicitation Detection

Classification Diagnostics

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
*
I I a,c h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning
Image Source: Robot NaVigation Skill Ac quisition
http://www.wordstream.com/blog/ws/2017/07/28/machine-
learning-applications

Learning Tasks
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WHAT IS A BAYESIAN NETWORK? Zurieh™

Bayesian Networks are defined by two elements:
Network structure:
Directed Acyclic Graph (DAG): G = (V, A)
In which each node vi € V corresponds to a random variable Xi

Probability distribution:

Probability distribution X with parameters ©, which can be factorised into smaller
local probability distributions according to the arcs aij € A present in the graph.

A BN encodes the factorisation of the joint distribution

(!’

P(X) = H P(X; | Pa;,©;), where Pa; is the set of parents of X
j=1



SOME ELEMENTS OF PROBABILITY THEORY

P(A,B
The conditional probability of Agiven Bis:  P(A | B) = IE) (jB ) )
P(B| A)P(A)
. P(A|B)=
Bayes theorem ( ‘ ) P(B)

Let A, B and C non intersecting subsets of nodes in a DAG G

Ais conditionally independent of B givenCif: A I p B|C

P(A,B|C)=P(A|C)P(B | C)



ELEMENT OF GRAPH THEORY

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C If: Al = B‘C

PA,B|C)=PA|C)P(B|C)

P(A,B,C)=PA|C)P(C | B)P(B)

P(A|C)P(C | B)P(B)
P(C)

_ PA]CO)P(B,C)

- P(C)

=P(A|C)P(B|C)

P(A,B|C) =




ELEMENT OF GRAPH THEORY

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C If: Al = B‘C

PA,B|C)=PA|C)P(B|C)

P(A,B,C)=PA)P(C|APB|C)

P(A)P(C | A)P(B | C)
P(C)

_ P(A,C)P(B|C)

- P(C)

= P(A|C)P(B|C)

P(A,B|C) =




ELEMENT OF GRAPH THEORY

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C If: Al = B‘C

P(A,B|C)=P(A|C)P(B | C)

P(A,B,C)=PC)P(A|C)P(B|C)

P(C)P(A | C)P(B | C)
P(C)
— P(A|C)P(B | C)

P(A,B|C) =




ELEMENT OF GRAPH THEORY

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C If: Al = B‘C

PA,B|C)=PA|C)P(B|C)

P(A,B,C) = P(A)P(B)P(C | A, B)
P(A)P(B)P(C | A, B)

P(C) A Y p B|C
~ P(A)P(B)P(4,B,C)

- P(A)P(B)P(C)

— P(A,B | C)

P(A,B|C) =
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ELEMENT OF GRAPH THEORY

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C If: Al = B‘C
P(A,B|C)=PA|C)P(B|C)

A [ p B|C Al p B|C

c

©
(C
©
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LEARNING BAYESIAN NETWORKS

» In a practical perspective, for observational data, if learning algorithms rely on
probabllistic learning algorithm. Then one can learn up to the Markov equivalence

class.

» Markov equivalence class are the set of DAGs that have the same skeleton and V-
structure.

A
DAG @\ / complete PDAG \ /

© — ©
._@‘/ \‘@ ®—@/ \®

®
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A path fr
LEARNI

» the arrows on the path meet either head-to-tall or tail-to-tail at the node, and the

node Is In the set C, or

» the arrows meet head-to-head at the node, and neither the node, nor any of its

descendants, are C.

If all paths from A to B are blocked, A is said to be d-separated from B by C.

Al 4 B|C |
Theorem (Verma & Pearl, 1988): A is d-separated from B by C if, and only If, the

joint distribution over all variables in the graph satisfies:
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ELEMENT OF GRAPH THEORY

The Markov Blanket of a node is the set of parents, co-parents and children.

Parents

® Co-Parents

Children

P(Xg | Xn,k #n) = P(Xk | XMB®)), VK

The Markov Blanket of a node Is the set of nodes that shields the index node from the res
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LEARNING BAYESIAN NETWORKS

Model selection Parameter estimation

P(M|D) = P(0m,S|D) = P(Om|S, D)  P(S|D)

model learning parameter learning structure learning



LEARNING BAYESIAN NETWORKS
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Known graph structure

Unknown graph structure

Fully Observed data

Doable

Search-and-score
PC algorithm

Missing data/hidden
variables

EM algorithm
Gradient ascent
Variational inference

Doable




LEARNING BAYESIAN NETWORKS

Constraint based algorithms

Pxi1y|z <«

X1sY|Z=X_L1Y|Z

O

T % University of
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Search-and-score algorithms

Maximum a posteriori score

G* = argmax f(D,G,n,...)
G

Example of scoring functions:
» Bayesian versus ML scores
» log marginal likelihood
» Bayesian-Dirichlet (BDeu,BDs,BDe)

» Bayesian Information Criterion (BIC)
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LEARNING BAYESIAN NETWORKS

Constraint-based algorithms

» Inductive Causation (IC): (Verma and Pearl, 1991)
» Provides a framework for learning the structure of Bayesian networks using
conditional independence tests in three steps

» A major problem of the IC algorithm is that the first two steps cannot be
applied to any real-world problem due to computational complexity ...

» PC: first practical application of the IC algorithm (Spirtes et al., 2001)
» backward selection procedure from the saturated graph

»  Grow-Shrink (GS) (Margatritis, 2003)
»  Simple forward selection MB detection approach

» Incremental Association (IAMB): (Tsamardinos et al., 2003)

» two-phase selection scheme based on a forward selection followed by a
backward selection of the MB
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P EGERMSINGBIES MaethoET veoRiess Markov and faithfulness assumptior“

» Conditional independencies in the distribution exactly equal the ones encoded Iin

the DAG via d-separation

Markov
AlLgB|IC =2 ALl pB|C
Faithtul

» Causal sufficiency: no unmeasured common causes
In a pratical perspective:

» Testing mixture of data?

» Testing assumptions?
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LEARNING BAYESIAN NETWORKS

Score-and-search algorithms
» Heuristic approaches / Greedy search
» Hill-climbing (with possibly random restarts/stochastics ... )
» Tabu search (Glover, 1986)
» Simulated annealing (Kirkpatrick et al, 1983)
» Plus an entire zoo of methods ...
» EXxact search
» Exact node ordering (Koivisto et al. , 2004)
» Learning with cutting planes (Cussens, 2012)

Constrain




LEARNING BAYESIAN NETWORKS . EPcide
Scores
» Decomposabillity!
» Discrete BNs:
» Bayesian-Dirichlet: BDeu (Heckerman et al. ,1995)
» Score equivalence for additive regression framework:
» Bayesian based scores: not always score equivalent due to the prior!
» Information theoretic scores: BIC asymptotically score equivalent
Counter example

» Maximum likelihood estimator ... return fully connected BN!

In a practical perspective:

» Scoring mixture of data?

» Score equivalence!
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ABN STRUCTURE/PARAMETER LEARNING =

Search and score algorithm @
Structures  glm AIC/BIC A

* Exact or heuristic search ’
® — score 1
oL 0°

‘ﬁ. =  score 2 (o] g%g z
‘;ﬂ‘ . score 3 c @ ‘

N Causality! Bayesian network with
ol e® =8 score 4 \ | highest posterior

PElRIBEL orobability
structures

Parameter estimation Using R

» compute marginal posterior density buildscorecache()

_ _ mostprobable()
» regression estimate

fitabn()
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CAUSAL THINKING VERSUS ACAUSAL THINKING he

» Strong assumptions ... but common in statistics, no?

» “It seems that if conditional independence judgements are byproducts of stored
causal relationships, then tapping and representing those relationships directly
would be a more natural and more reliable way of expressing what we know or
believe about the world. This is indeed the philosophy behind causal Bayesian
networks.” (Pearl, 2009)

» The do-calculus
» Interventions
» In epidemiology: Randomised Controlled Trial
» So ... BN is a nice framework to treat causal and causal thinking
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R CODE: SOFTWARE IMPLEMENTATION

Popular R packages (available on CRAN)
bnlearn
» Learning via constraint-based and score-based algorithms (many!)
pcalg
» Robust estimation of CPDAG via the PC-Algorithm
deal
» Learning BNs with mixed (discrete and continuous) variables
catnet
» Discrete BNs using likelihood-based criteria
abn
» Learning BNs with mixed (discrete, continuous, Poisson) variables
» Score based methods: Bayesian and freguentist estimation
» Exact and heuristic search

Disclaimer: | am author and maintainer of the abn R package. | will use it for the example part.



R CODE: EXAMPLE ASIA iy
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Proposed by Lauritzen et al.,1988 and provided by Scutari, 2009

“Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,
or none of them, or more than one of them. A recent visit to Asia increases the chances
of tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X-ray do not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.”

#F#defining distributions

dist = list(Asia = "binomial”, ASia\ SmOKIng
Smoking = "binomial”, |
Tuberculosis = "binomial”, Hﬁf &5{/ %
LungCancer = "binomial", g \
Bronchitis = "binomial"”, h
Either = "binomial", ‘Tuberculosis‘ ILungcancer‘ I'.I
XRay = "binomial”, | \bﬁ

#plot BN

plotabn(dag.m = ~Asia|Tuberculosis +

Dyspnea = "binomial") |

| Bronchitis

Tuberculosis|Either +

Either |XRay:Dyspnea +

Smoking|Bronchitis:LungCancer + ‘ Elther ‘
LungCancer | Either + ~

Bronchitis|Dyspnea,

data.dists = dist, N

edgedir = "cp“,

fontsize.node = 30,
edge.arrowwise = 3) XRay Dyspnea




ASIA: SCORE BASED ALGORITHM

> compareDag(ref = t(dag.adj),
+ test = dag)
STPR
[1] 0.75
#loglikelihood score
bsc.compute <- buildscorecache(data.df = asia, $FPR
data.dists = dist, [1] 0.01785714
max.parents = 2)
SAccuracy

dag <- mostprobable(score.cache = bsc.compute) [1] 0.953125

plotabn(dag.m = dag,data.dists = dist, fontsize.node = 30, edge.arrc
SFDR

[1] 0.2857143
| earned Truth

S*G-measure’

Asia \Tubercuuos.s \Lungc:ancer @ Sn?olking VR SHEES

S°Fl-score™
[1] 44.8

SPPV

L\ o 1|| [1] 0.8571429
@ | ‘ Er[her‘ e
A/ \/

/ [1] 0.2857143

Dyspnea XRay Dyspnea f;?ag‘ming_dismnce\



ASIA: KNOWN NETWORK

fitabn(dag.m = ~Asia|Tuberculosis+
Tuberculosis |Either +
Either|XRay:Dyspnea +
Smoking |Bronchitis:LungCancer +
LungCancer |Either +
Bronchitis|Dyspnea,data.df = asia,data.dists = dist)$modes

$Asia
Asia|(Intercept) Asia|Tuberculosis
-4.811200 1.765763

$Smoking
Smoking| (Intercept) Smoking|LungCancer Smoking|Bronchitis
-1.027065 2.356988 1.807460

$Tuberculosis
Tuberculosis | (Intercept) Tuberculosis |Either
-12.22120 10.21823

$LungCancer
LungCancer | (Intercept) LungCancer |Either
-12.07565 14.18547

$Bronchitis
Bronchitis | (Intercept) Bronchitis |Dyspnea
-1.388644 3.200393

SEither
Either| (Intercept) Either | XRay Either |Dyspnea
-8.656348 8.259773 1.538789

$XRay
XRay | (Intercept)
-2.052496

$Dyspnea
Dyspnea | (Intercept)
-0.1201444

fitabn.mle({dag.m = dag.adj,data.df = asia,data.dists = dist)S$coef

$Asia
Asia|intercept Tuberculosis
1, ~4.811371 1.766849

$Smoking
Smoking|intercept LungCancer Bronchitis
[1,1] -1.027075 2.357079 1.807472

$Tuberculosis
Tuberculosis |intercept Either
1.3 -8.517393 6.516139

$LungCancer
LungCancer | intercept Either
[ B -8.517393 10.62598

$Bronchitis
Bronchitis|intercept Dyspnea
[1,1] -1.388655 3.200415

$Either
Either|intercept XRay Dyspnea
[1,] -8.665128 8.268402 1.539146

$XRay
XRay | intercept
(1,1 -2.0525

s$Dyspnea
Dyspnea | intercept
[1,] -0.1201443




ASIA: EXTERNAL KNOWLEDGE

##recent visit to Asia increases risk of tuberculcsis
bsc.compute <- buildscorecache.mle(data.df = asia,
data.dists = dist,
max.parents = 2,
dag.retained = ~Tuberculosis|Asia)

dag <- mostprobable(score.cache = bsc.compute,score = "bic")

> compareDag(ref =
+ test =
$TPR

[1] 0.875

$FPR
[1] 0.01785714

$Accuracy
[1] 0.96875

plotabn(dag.m = dag,data.dists = dist, fontsize.node = 30, edge.arroy $FDR

Learned Truth

Bronchitis ‘
| A\ EE%Q Smoking

%

lll Bronchitis

N

| Either

XRay Dysprea Dyspnea

[1] 0.125

$"G-measure”
[1] 0.875

S Fl-score”
[1] 56

$PPV
[1] 0.875

$FOR
[1] 0.125

$ Hamming-distance’
[1] 2

t(dag.adj),
(dag))
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Thank you for your attention

THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT.

xkcd.com
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ASIA: BOOTSTRAPPING

library(doParallel)
library(foreach)

¢l <- makeCluster(2)
registerDoParallel(cl)

set.seed(1120)

nboot <~ 200

nvarg <- dim(asia)(2]

nobs <- dim(asia)[1)

bootstrap.dag <- array(data = NA,dim = c(nvars, nvars, nboot))

start_time <- Sys.time()
bootstrap.dag <- foreach(i = 1l:nboot,.packages = c("mlabn”, "abn")) %dopar% {
mycache.computed.mle <- buildscorecache.mle(data.df = asia[sample(x = 1l:nobs,size = (.8*nobs,replace = FALSE),],

data.dists = dist,
max.parents = 2,
dry.run = FALSE,
maxit = 1000,
tol = le-11)

dag <- mostprobable(score.cache = mycache.computed.mle, score = "bic")}
compute_time <- Sys.time()-start_time

#¥analysis
df .boot <- array(data = unlist(bootstrap.dag), dim = c(8, 8, 200))

dag<-apply(df.boot, 1:2, mean)
#dag.mdl<-dag.before

colnames(dag) <- rownames(dag) <- names(dist)
dag.boot.50 <~ dag

dag.boot.50[{dag>0.5] <~ 1
dag.boot.50[{dag<=0.5] <=~ 0

dag[dag<=0.5] <~ 0

colnames(dag.boot.50) <~ rownames(dag.boot.50) <- names(dist)

plotabn(dag.m = t({dag.boot.50),data.dists = dist,fontsize.node = 30,arc.strength = l0*dag,digit.precision = 2,edge.arrowwise = 3)




ASIA: BOOTSTRAPPING

Asia Smoking

L

LungCancer

Tuberculosis

Bronchitis

Either

AN

XRay

Dyspnea

T
Hafl] =%

University of
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ASIA: HOW MANY PARENT ARE NEEDED?

res.mlik <- NULL
res.aic <- NULL
res.bic <~ NULL
res.mdl <- NULL

for(i in 1:4){
mycache.computed.mle <- buildscorecache.mle(data.df = asia,
data.dists = dist,
max.parents = i,
dry.run = FALSE,
maxit = 1000,
tol = le-11)

dag <- mostprobable(score.cache = mycache.computed.mle,score = "aic")

res.aic <- rbind(res.aic,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df, data.dists = dist)$aic)
dag <- mostprobable(score.cache = mycache.computed.mle,score = "bic")

res.bic <- rbind(res.bic,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$bic)
dag<-mostprobable(score.cache = mycache.computed.mle,score = "mdl"”)

res.mdl <- rbind(res.mdl,fitabn.mle(dag.m = dag,data.df = mycache.computed.mle$data.df,data.dists = dist)$mdl)

library(ggplot2)
library(reshape)
scoring <- data.frame(AIC = max(-res.aic)/-res.aic, BIC = max(-res.bic)/-res.bic, MDL = max(-res.mdl)/-res.mdl, 1:4)

scoring.long <- melt(scoring, id.vars="X1.4")

ggplot(data = scoring.long, aes(x=X1.4, y=(value), group=variable, color=variable)) +
geom_line() +
geom_point() +
ggtitle( "Scoring in function of the number of children", subtitle = NULL) +
xlab("# of parent per node") +
ylab(“% of max score”) +
scale_x continuous(breaks=c(1,2,3,4,5,6,7))




ASIA: HOW MANY PARENT ARE NEEDED?

r‘ﬁf; .
i .
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Scoring in function of the number of children

1.000 - < -0

0.0495s -
@ .
a variable
3 -o- AIC
é 0.990 - - BIC
° . MDL
&2

0.985 -

" 2 3 4

# of parent per node
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ASIA: CONSTRAINT-BASED LEARNING i Zurich™

bn.gs <- gs(asia) ‘/ \\
plot(bn.gs) (\)yspnef}

bn.iamb <- iamb(asia) /"'“'\\ \\ S S

plot(bn.iamb) : Asia | \ ',f XRay |
\ - _//‘ \\ '\\\ .//I
— 3 -
\
\
\I
I.“
\l
\
\
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