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Regression in a classical sense

Yi = α + βxi + εi , εi
iid∼ N(0, σ2)
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Regression in a classical sense

A different perspective: fY |X=x(y|x) = φ
(

y−α−βx
σ

)
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Regression in a classical sense

Yet another scale: P(Y ≤ y|x) = FY |X=x(y|x) = Φ
(

y−α−βx
σ

)
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Where classical regression breaks down

So how does one tackle a problem like this?
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A note on classical regression

Source: twitter.com/XiaoLiMeng1
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Perspectives on regression

Linear models:
E (Y |X = x) = x>β

Generalized linear models:

g (E (Y |X = x)) = x>β

Transformation models:

FY (y|x) = FZ (hY (y|x))

October 10, 2019 Transformation Models Page 7



Transformation models

FY (y|x) = FZ (hY (y|x))

FY (Complex) conditional distribution of the response

FZ (Simple) error distribution

hY (Flexible) transformation function
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Motivation: Regression

Everything is in the conditional distribution function!

P (Y ≤ y|X = x) = FY |X=x (y|x)

Q1: How do changes in x propagate to y?

Q2: How can we estimate F̂Y |X=x from data?

Q3: Why model on the scale of the cdf?
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The linear model as a transformation model

Starting from Y |x i.i.d.∼ N
(
α + x>β, σ2

)
we have

P (Y ≤ y|X = x) = Φ

(
y − α− x>β

σ

)
.

Identify

FZ = Φ

hY (y|x) = y/σ − α/σ − x>β/σ

= ϑ1 + ϑ2y − x>β̃
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Example: Two group comparison
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Example: Two group comparison

Continuous response Y and one binary treatment indicator
x ∈ {0,1}:

FY |X=x(y|x = 0) = FZ (h(y))

h(y) = F−1
Z

(
FY |X=x(y|x = 0)

)
Z = h(y) is the transformed r.v.

Now assume

FY |X=x(y|x = 1) = FZ (h(y)− β)
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Example: Two group comparison

fY |X=x(y|x) = φ(h(y)− β̃x)h′(y)
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Example: Two group comparison

FY |X=x(y|x) = Φ(h(y)− β̃x)
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Example: Two group comparison

Now FZ = Φ determines the interpretational scale of β̃:

E(h(y) | x = 1)− E(h(y) | x = 0) = β̃

Since

(h(y)|x = 0) ∼ N(0,1) and

(h(y)|x = 1) ∼ N(β̃,1)
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Example: Two group comparison

Now FZ = Φ determines the interpretational scale of β̃:

E(h(y) | x = 1)− E(h(y) | x = 0) = β̃

Since

(h(y)|x = 0) ∼ N(0,1) and

(h(y)|x = 1) ∼ N(β̃,1)

Bonus: E(Y |x = 1)− E(Y |x = 0) = β if h(y) affine
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Example: Two group comparison
set.seed(24101968)
n <- 20; beta <- 2
x <- rep(c(0, 1), each = 10)
y <- 10 + x * beta + rnorm(n, sd = 0.5)
coef(m0 <- stats::lm(y ~ x))

## (Intercept) x
## 9.76 2.44

coef(m1 <- tram::Lm(y ~ x), with_baseline = TRUE)

## (Intercept) y x
## -21.34 2.19 5.34

Q: How do we arrive at the same coefficients?
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Example: Two group comparison

Since α̃ = −α/σ and β̃ = β/σ

coef(m1, with_baseline = TRUE)[-2] /
coef(m1, with_baseline = TRUE)[2] * c(-1, 1)

## (Intercept) x
## 9.76 2.44

But why favor Lm over lm?

– lm() estimates σ̂2 and β̂ separately via REML

– lm() cannot deal with any form of censoring
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Example: Two group comparison

Affine baseline transformations are very restrictive!

hY (y|x) = ϑ1 + ϑ2y − x>β̃
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Beyond the linear model: Box-Cox type models
Allow h(y) to be more flexible, e.g. a basis expansion

h(y;ϑ) = a(y)>ϑ

m2 <- BoxCox(cmedv ~ chas, order = 6, data = BostonHousing2,
extrapolate = TRUE)

coef(m2, with_baseline = TRUE)

## Bs1(cmedv) Bs2(cmedv) Bs3(cmedv) Bs4(cmedv) Bs5(cmedv) Bs6(cmedv)
## -1.262 -0.737 -0.213 0.873 0.873 1.097
## Bs7(cmedv) chas1
## 1.322 0.638

FY |X=x(y|x) = FZ

(
h(y)− x>β

)
= Φ

(
a(y)>ϑ− x>β

)
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Beyond linear baseline transformations

hY (y|chas) = a(y)>ϑ− β · chas
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Beyond linear baseline transformations

fY (y|chas) = φ
(

a(y)>ϑ− β · chas
)

a′(y)>ϑ
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Beyond FZ (z) = Φ(z)

Interpretational scale of β changes with FZ :

Φ(z) β difference in expectation
FSL(z) = expit(z) β log odds ratio
FMEV(z) = 1− exp(− exp(z)) β log hazard ratio
FGumbel(z) = exp(− exp(−z)) β log Lehmann alternative
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Back to the beginning

FY |X=x(y|x) = FSL (h(y) + βx)
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Back to the beginning

FY |X=x(y|x) = fSL(h(y) + βx) h′(y)
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Back to the beginning

hY (y|x) = h(y) + βx
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Connection to Flow-based methods

Z ~ f Z

Y = h−1 (Z)

Z = h(Y)

Y ~ f Y
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Outlook: Beyond stratified linear transformation models

– Conditional transformation models {mlt} (TH)

– Transformation mixed models {tramm} (BT)

– Count-transformation models {cotram} (SS)

– Regularized transformation models {tramnet} (LK)

– Transformation trees and random forests {trtf} (TH)

– Transformation boosting machines {tbm} (TH)

– Multivariate transformation models (LB)
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Appendix



Basis Expansions

Trams are parametrized using Bernstein Polynomials.

bν,n(y) =
(n
ν

)
yν(1− y)n−ν , ν = 0, . . . ,n

hY (y) = aBs,p(y)>ϑ

– Monotonicity constraint nicely translates into D(1)ϑ ≥ 0

– Taking derivatives is easy, i.e. to compute fY (y)

– Direct connection to the Beta distribution

– Computational convenience
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Basis Expansions

bν,n(y) =
(n
ν

)
yν(1− y)n−ν , ν = 0, . . . ,n
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Interpretational scales induced by FZ

FZ Interpretation of x>β

Φ E(hY (Y ) | x) = x>β

FSL
FY |X=x (y|x)

1−FY |X=x (y|x)
= FY (y)

1−FY (y)
exp(−x>β)

FMEV 1− FY |X=x(y | x) = (1− FY (y))exp(−x>β)

FGumbel FY |X=x(y | x) = FY (y)exp(x
>β)
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Beyond shift effects

Stratum variables and response varying effects

hY (y|s,x) = hY (y|s)− x>β

m3 <- BoxCox(cmedv | chas ~ 1, order = 6, data = BostonHousing2, extrapolate = TRUE)

– Binary stratum variable: Separate baseline trafos

– Continuous strata: response varying effect
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Beyond shift effects

hY (y|chas)
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Beyond shift effects

fY (y|chas) = φ (hY (y|chas)) h′Y (y|chas)
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