Transformation Models

An Introduction

Lucas Kook
University of Zürich

Regression in a classical sense

$$
Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, \varepsilon_{i} \stackrel{\text { id }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)
$$

Regression in a classical sense

A different perspective: $f_{Y \mid X=x}(y \mid x)=\phi\left(\frac{y-\alpha-\beta x}{\sigma}\right)$

Regression in a classical sense

Yet another scale: $\mathbb{P}(Y \leq y \mid x)=F_{Y \mid X=x}(y \mid x)=\Phi\left(\frac{y-\alpha-\beta x}{\sigma}\right)$

Where classical regression breaks down

So how does one tackle a problem like this?

A note on classical regression

Xiao-Li Meng
@XiaoLiMeng1
The term "regression" reflects statisticians' modesty, and perhaps also our regrets? We should not have started statistical modeling with regression, for it confuses probabilistic model fitting with deterministic line/curve fitting, building wrong intuitions for generations.

7:48 am • 1 Oct 2019 - Twitter for iPhone

Source: twitter.com/XiaoLiMeng1

Perspectives on regression

Linear models:

$$
\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{\beta}
$$

Generalized linear models:

$$
g(\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}))=\boldsymbol{x}^{\top} \boldsymbol{\beta}
$$

Transformation models:

$$
F_{Y}(y \mid \boldsymbol{x})=F_{Z}\left(h_{Y}(y \mid \boldsymbol{x})\right)
$$

Transformation models

$$
F_{Y}(y \mid \boldsymbol{x})=F_{Z}\left(h_{Y}(y \mid \boldsymbol{x})\right)
$$

F_{Y} (Complex) conditional distribution of the response
F_{Z} (Simple) error distribution
h_{Y} (Flexible) transformation function

Motivation: Regression

Everything is in the conditional distribution function!

$$
\mathbb{P}(Y \leq y \mid \boldsymbol{X}=\boldsymbol{x})=F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid \boldsymbol{x})
$$

Q1: How do changes in \boldsymbol{x} propagate to \boldsymbol{y} ?
Q2: How can we estimate $\hat{F}_{Y \mid X=\boldsymbol{x}}$ from data?
Q3: Why model on the scale of the cdf?

The linear model as a transformation model

Starting from $Y \mid \boldsymbol{x} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(\alpha+\boldsymbol{x}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$ we have

$$
\mathbb{P}(Y \leq y \mid \boldsymbol{X}=\boldsymbol{x})=\Phi\left(\frac{y-\alpha-\boldsymbol{x}^{\top} \boldsymbol{\beta}}{\sigma}\right)
$$

Identify

$$
\begin{aligned}
F_{Z} & =\Phi \\
h_{Y}(y \mid \boldsymbol{x}) & =y / \sigma-\alpha / \sigma-\boldsymbol{x}^{\top} \boldsymbol{\beta} / \sigma \\
& =\vartheta_{1}+\vartheta_{2} y-\boldsymbol{x}^{\top} \tilde{\boldsymbol{\beta}}
\end{aligned}
$$

Example: Two group comparison

Example: Two group comparison

Continuous response Y and one binary treatment indicator $x \in\{0,1\}$:

$$
\begin{aligned}
F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid x=0) & =F_{Z}(h(y)) \\
h(y) & =F_{Z}^{-1}\left(F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid x=0)\right) \\
Z & =h(y) \text { is the transformed r.v. }
\end{aligned}
$$

Now assume

$$
F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid x=1)=F_{Z}(h(y)-\beta)
$$

Example: Two group comparison

$$
f_{Y \mid X=x}(y \mid x)=\phi(h(y)-\tilde{\beta} x) h^{\prime}(y)
$$

Example: Two group comparison

$$
F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid x)=\Phi(h(y)-\tilde{\beta} x)
$$

Example: Two group comparison

Now $F_{Z}=\Phi$ determines the interpretational scale of $\tilde{\beta}$:

$$
\mathbb{E}(h(y) \mid x=1)-\mathbb{E}(h(y) \mid x=0)=\tilde{\beta}
$$

Since

$$
\begin{aligned}
& (h(y) \mid x=0) \sim \mathrm{N}(0,1) \text { and } \\
& (h(y) \mid x=1) \sim \mathrm{N}(\tilde{\beta}, 1)
\end{aligned}
$$

Example: Two group comparison

Now $F_{Z}=\Phi$ determines the interpretational scale of $\tilde{\beta}$:

$$
\mathbb{E}(h(y) \mid x=1)-\mathbb{E}(h(y) \mid x=0)=\tilde{\beta}
$$

Since

$$
\begin{aligned}
& (h(y) \mid x=0) \sim \mathrm{N}(0,1) \text { and } \\
& (h(y) \mid x=1) \sim \mathrm{N}(\tilde{\beta}, 1)
\end{aligned}
$$

Bonus: $\mathbb{E}(Y \mid x=1)-\mathbb{E}(Y \mid x=0)=\beta$ if $h(y)$ affine

Example: Two group comparison

```
set.seed(24101968)
n <- 20; beta <- 2
x<- rep(c(0, 1), each = 10)
y <- 10 + x * beta + rnorm(n, sd = 0.5)
coef(m0 <- stats::lm(y ~ x))
```

\#\# (Intercept) x
\#\# $9.76 \quad 2.44$
coef(m1 <- tram::Lm(y ~ x), with_baseline = TRUE)

\#\# (Intercept)	y	x	
\#\#	-21.34	2.19	5.34

Q: How do we arrive at the same coefficients?

Example: Two group comparison

```
Since \(\tilde{\alpha}=-\alpha / \sigma\) and \(\tilde{\beta}=\beta / \sigma\)
coef(m1, with_baseline = TRUE) [-2] /
    coef(m1, with_baseline \(=\) TRUE) [2] * c(-1, 1)
\#\# (Intercept)
    x
\#\# 9.76
2.44
```

But why favor Lm over lm?

- $\operatorname{lm}()$ estimates $\hat{\sigma}^{2}$ and $\hat{\boldsymbol{\beta}}$ separately via REML
- lm() cannot deal with any form of censoring

Example: Two group comparison

Affine baseline transformations are very restrictive!

$$
h_{Y}(y \mid \boldsymbol{x})=\vartheta_{1}+\vartheta_{2} y-\boldsymbol{x}^{\top} \tilde{\boldsymbol{\beta}}
$$

Beyond the linear model: Box-Cox type models

Allow $h(y)$ to be more flexible, e.g. a basis expansion

```
    h(y;\boldsymbol{\vartheta})=\boldsymbol{a}(y\mp@subsup{)}{}{\top}\boldsymbol{\vartheta}
m2 <- BoxCox(cmedv ~ chas, order = 6, data = BostonHousing2,
    extrapolate = TRUE)
coef(m2, with_baseline = TRUE)
## Bs1(cmedv) Bs2(cmedv) Bs3(cmedv) Bs4(cmedv) Bs5(cmedv) Bs6(cmedv)
## -1.262 [-0.737 [-0.213 
## Bs7(cmedv) chas1
## 1.322 0.638
```

$$
\begin{aligned}
F_{Y \mid \boldsymbol{x}=\boldsymbol{x}}(y \mid \boldsymbol{x}) & =F_{Z}\left(h(y)-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right) \\
& =\Phi\left(\boldsymbol{a}(y)^{\top} \boldsymbol{\vartheta}-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)
\end{aligned}
$$

Beyond linear baseline transformations

$$
h_{Y}(y \mid \text { chas })=\boldsymbol{a}(y)^{\top} \boldsymbol{\vartheta}-\beta \cdot \text { chas }
$$

Beyond linear baseline transformations

Beyond $F_{z}(z)=\Phi(z)$

Interpretational scale of β changes with F_{z} :

$$
\begin{array}{ll}
\Phi(z) & \beta \text { difference in expectation } \\
F_{\mathrm{SL}}(z)=\operatorname{expit}(z) & \beta \text { log odds ratio } \\
F_{\mathrm{MEV}}(z)=1-\exp (-\exp (z)) & \beta \text { log hazard ratio } \\
F_{\text {Gumbel }}(z)=\exp (-\exp (-z)) & \beta \text { log Lehmann alternative }
\end{array}
$$

Back to the beginning

$$
F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid x)=F_{\mathrm{SL}}(h(y)+\beta x)
$$

Back to the beginning

$$
F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid x)=f_{\mathrm{SL}}(h(y)+\beta x) h^{\prime}(y)
$$

Back to the beginning

$$
h_{Y}(y \mid x)=h(y)+\beta x
$$

Connection to Flow-based methods

Outlook: Beyond stratified linear transformation models

- Conditional transformation models $\{\mathrm{mlt}\}$ (TH)
- Transformation mixed models \{tramm (BT)
- Count-transformation models \{cotram\} (SS)
- Regularized transformation models \{tramnet\} (LK)
- Transformation trees and random forests \{trtf\} (TH)
- Transformation boosting machines \{tbm\} (TH)
- Multivariate transformation models (LB)

Acknowledgements

Torsten Hothorn
Muriel Buri
Luisa Barbanti
Sandra Sigfried
Balint Tamasi
Beate Sick

Appendix

Basis Expansions

Trams are parametrized using Bernstein Polynomials.

$$
\begin{aligned}
& b_{\nu, n}(y)=\binom{n}{\nu} y^{\nu}(1-y)^{n-\nu}, \quad \nu=0, \ldots, n \\
& h_{Y}(y)=\boldsymbol{a}_{\mathrm{Bs}, p}(y)^{\top} \vartheta
\end{aligned}
$$

- Monotonicity constraint nicely translates into $\boldsymbol{D}^{(1)} \boldsymbol{\vartheta} \geq 0$
- Taking derivatives is easy, i.e. to compute $f_{Y}(y)$
- Direct connection to the Beta distribution
- Computational convenience

Basis Expansions

Interpretational scales induced by F_{Z}

$F_{Z} \quad$ Interpretation of $\boldsymbol{x}^{\top} \boldsymbol{\beta}$

$\Phi \quad \mathbb{E}\left(h_{Y}(Y) \mid \boldsymbol{x}\right)=\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}$
$F_{S L} \quad \frac{F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid \boldsymbol{x})}{1-F_{Y \mid X=x}(y \mid \boldsymbol{x})}=\frac{F_{Y}(y)}{1-F_{Y}(y)} \exp \left(-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)$
$F_{\text {MEV }} \quad 1-F_{Y \mid X=\boldsymbol{x}}(y \mid \boldsymbol{x})=\left(1-F_{Y}(y)\right)^{\exp \left(-\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)}$
$F_{\text {Gumbel }} \quad F_{Y \mid \boldsymbol{X}=\boldsymbol{x}}(y \mid \boldsymbol{x})=F_{Y}(y)^{\exp \left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)}$

Beyond shift effects

Stratum variables and response varying effects

```
        hY}(y|\boldsymbol{s},\boldsymbol{x})=\mp@subsup{h}{Y}{}(y|\boldsymbol{s})-\mp@subsup{\boldsymbol{x}}{}{\top}\boldsymbol{\beta
m3 <- BoxCox(cmedv | chas ~ 1, order = 6, data = BostonHousing2, extre
```

- Binary stratum variable: Separate baseline trafos
- Continuous strata: response varying effect

Beyond shift effects

$$
h_{Y}(y \mid \text { chas })
$$

Beyond shift effects

$$
f_{Y}(y \mid \text { chas })=\phi\left(h_{Y}(y \mid \text { chas })\right) h_{Y}^{\prime}(y \mid \text { chas })
$$

