
Neural Networks for unsupervised learning
From Principal Components Analysis 
to Autoencoders to semantic hashing
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Many slides are taken form Hinton’s great lecture on NN:
https://www.coursera.org/course/neuralnetsBeate Sick



What is semantic hashing?

Semantic hashing in my understanding:

Procedure that allows to find in an efficient way documents or images 
that are similar in their “meaning”



Input data may have thousands or millions of dimensions!

• images have many thousands of pixels 

• text data has many letters or words

• sensors collect thousands of signals

Are all those dimensions (letters, pixels) necessary?

Dimensionality Reduction

Goal: Represent data with fewer dimensions!

• Work with fewer features: get rid of p>>n situation

• Better visualization: our imagination does not go beyond 3D

• Discover “intrinsic dimensionality” of data: learn low-dim information representation

• Get a compact hash tag for each high dimensional data point 

• Get a measure for abnormality by quantifying the reconstruction error



Pioneer work



Artificial Neural Networks – fully connected or CNN

input conv1 pool1 conv2 pool2 layer3 output

Image: Master Thesis Christopher Mitchell http://www.cemetech.net/projects/ee/scouter/thesis.pdf

CNN:

Fully connected:

Image:
http://neuralnetworksanddeeplearning.com/chap6.html



Dimension reduction via Autoencoder (AE)
Train AE using stochastic gradient backpropagation  

Image from: http://codingplayground.blogspot.ch/2015/10/what-are-autoencoders-and-stacked.html

The AE network gets the optimization task to reconstruct the input which 
requires that essential information is represented in only few dimensions 
corresponding to the number neurons in the bottleneck.

Rather than picking a subset of the features, we can 
construct k<n new features y from existing n features.



PCA is a rotation of the coordinate system -> no information is lost
The first principal component (PC1 or Y1) explains most of the variance, the 
second the second most,…. All PC components explains the whole variance.
Dimension reduction is done by dropping higher PCs. 

PCA 
rotation

Dimension reduction by PCA
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linear combination:

k k kY a X a X 

Each principle component can be represented as linear 
combination of the original features and the coefficients 
aij in the linear combination are called “loadings”.



A picture of PCA starting from 2D -> 1D representation
Reconstruction error 

The red point is represented in 1D by the green point – the position 
orthogonal to the 1.PC (low-dim hyperplane) cannot be reconstructed, 
instead the mean of (over all data) of this orthogonal direction is taken. 

The reconstruction of the red point has an reconstruction-error equal to 
the squared distance between red and green points. 

1.PC
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PCA Rotation can be achieved by multiplying 
X with an orthogonal rotation matrix A

The columns ak of A are given by the normalized 
Eigenvector a of the the Covariance-matrix Sx

Construction of PCs in PCA
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PCA minimizes reconstruction error 
over all available m data points
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The first k PCs define 
k-dim hyperplane to which 
sum of squared projection 
errors is minimal

Reconstruct X with only k<p PCs:
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Dimensionality Reduction by an Autoencoder (AE)

encoding decoding
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The k linear units of an AE with 1 hidden layer span the same hyperplane as 1to k-PCs
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Shallow and deep Autoencoder (AE)

AE allow to generalize PCA by using non-linear units or more hidden layers:

- Defining curved subspaces

- Defining non-linear, hierarchical, complex features

- Defining localized, distributed features (feature maps in convolutional architectures)



Deep AE are often hard to train ->
Use greedy layer-wise training of deep AE

Weight decay term
penalty, regularization



AE can  be used for feature construction

R package: autoencoder



Use reconstruction error for abnormality detection
compare PCA and AE based methods

25 components of simulated Lorenz system 17 continuous sensor data from a satellite

PCA

AE
(1 non-linear hidden layer)

Mayu Sakurada
2015



A comparison of methods for compressing 
digit images to 30 real numbers

real              
data

30-D       
deep auto

30-D         
PCA

Slide taken from Hinton lectures



How to find documents that are similar to a query 
document

Convert each document into a “bag of words”.
This is word count vector ignoring order. 
Ignore stop words (like “the” or “over”) but still has a 
length of >2000

We could compare word count vectors of the query 
document and millions of other documents, 
but this is too slow. 

Approach: Reduce word count vectors to a much 
smaller vector that still contains most of the 
information about the content of the document.
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Slide taken from Hinton lectures



How to compress the count vector 

We train the neural network to 
reproduce its input vector as its output

This forces it to compress as much 
information as possible into the 10 
numbers in the central bottleneck.

These 10 numbers are then a good 
way to compare documents.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons 

250 neurons 

250 neurons 

10  

input 
vector

output 
vector

Slide taken from Hinton lectures



The non-linearity used for reconstructing bags of words

Divide the counts in a bag of words vector 
by N, where N is the total number of non-
stop words in the document.

The resulting probability vector gives the 
probability of getting a particular word if we 
pick a non-stop word at random from the 
document.

At the output of the autoencoder, we use a 
softmax.

The probability vector defines the desired 
outputs of the softmax. 

We treat the word counts as 
probabilities, but we make 
the visible to hidden weights 
N times bigger than the 
hidden to hidden weights 
take into account that we 
have N observations from 
the probability distribution.

Slide taken from Hinton lectures



First compress all documents to 2 numbers using PCA 
Then use different colors for different categories.

Slide taken from Hinton lectures

Train on bags of 2000 words 
for 400,000 training cases of 
business documents.



First compress all documents to 2 numbers using deep auto. 
Then use different colors for different document categories

Slide taken from Hinton lectures



Finding binary codes for documents

Train an auto-encoder using 30 logistic units 
for the code layer.

During the fine-tuning stage, add noise to the 
inputs to the code units. The noise forces their 
activities  to become bimodal in order to resist 
the effects of the noise.

Then we simply threshold the activities of the 
30 code units to get a binary code.

Krizhevsky discovered later that its easier to 
just use binary stochastic units in the code 
layer during training.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons 

250 neurons 

250 neurons 

30  code=hash

Slide taken from Hinton lectures



Using a deep autoencoder as a hash-function for 
finding approximate matches

hash 
function

supermarket 
search

Slide taken from Hinton lectures



Binary codes for image retrieval

Image retrieval is typically done by using the captions. 
Why not use the images too?

Pixels are not like words: 
individual pixels do not tell us much  about the content.

Extracting object classes from images is hard (now it is possible!) 

Maybe we should extract a real-valued vector that has information 
about the content? Matching real-valued vectors in a big database is 
slow and  requires a lot of storage.

Short binary codes are very easy to store and match.

Slide taken from Hinton lectures Slide taken from Hinton lectures



Krizhevsky’s deep autoencoder

1024 1024 1024

8192

4096

2048

1024

512

256-bit binary codeThe encoder has 
about 67,000,000 
parameters.

There is no theory to 
justify this architecture

It takes a few days on 
a GTX 285 GPU to 
train on two million 
images. 

32x32 images

Use many neurons, 
since logistic units

have lower capacity 

Slide taken from Hinton lectures



Reconstructions of 32x32 color images from 256-bit 
codes

Slide taken from Hinton lectures



retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

Slide taken from Hinton lectures



retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

Slide taken from Hinton lectures



How to make image retrieval more sensitive to objects 
and less sensitive to pixels

First train a big net to recognize lots of different types of objects in real images.

Use net that won the ImageNet competition

Then use the activity vector in the last hidden layer as the representation of the 
image. Use e.g. the Euclidian distance between the activity vectors in the last 
hidden layer.

This should be a much better representation to match than the pixel intensities.

Slide taken from Hinton lectures



Leftmost column 
is the search 
image.

Other columns 
are the images 
that have the 
most similar 
feature activities 
in the last hidden 
layer.

Slide taken from Hinton lectures


