
Neural Networks for unsupervised learning
From Principal Components Analysis
to Autoencoders to semantic hashing

PC
3

fe
at

ur
e

3

Many slides are taken form Hinton’s great lecture on NN:
https://www.coursera.org/course/neuralnetsBeate Sick

What is semantic hashing?

Semantic hashing in my understanding:

Procedure that allows to find in an efficient way documents or images
that are similar in their “meaning”

Input data may have thousands or millions of dimensions!

• images have many thousands of pixels

• text data has many letters or words

• sensors collect thousands of signals

Are all those dimensions (letters, pixels) necessary?

Dimensionality Reduction

Goal: Represent data with fewer dimensions!

• Work with fewer features: get rid of p>>n situation

• Better visualization: our imagination does not go beyond 3D

• Discover “intrinsic dimensionality” of data: learn low-dim information representation

• Get a compact hash tag for each high dimensional data point

• Get a measure for abnormality by quantifying the reconstruction error

Pioneer work

Artificial Neural Networks – fully connected or CNN

input conv1 pool1 conv2 pool2 layer3 output

Image: Master Thesis Christopher Mitchell http://www.cemetech.net/projects/ee/scouter/thesis.pdf

CNN:

Fully connected:

Image:
http://neuralnetworksanddeeplearning.com/chap6.html

Dimension reduction via Autoencoder (AE)
Train AE using stochastic gradient backpropagation

Image from: http://codingplayground.blogspot.ch/2015/10/what-are-autoencoders-and-stacked.html

The AE network gets the optimization task to reconstruct the input which
requires that essential information is represented in only few dimensions
corresponding to the number neurons in the bottleneck.

Rather than picking a subset of the features, we can
construct k<n new features y from existing n features.

PCA is a rotation of the coordinate system -> no information is lost
The first principal component (PC1 or Y1) explains most of the variance, the
second the second most,…. All PC components explains the whole variance.
Dimension reduction is done by dropping higher PCs.

PCA
rotation

Dimension reduction by PCA

Preparation
center data

x(1)

x(2)

y(1)

y(2)
y(1)

y(2)

7

1 1 2 2

linear combination:

k k kY a X a X 

Each principle component can be represented as linear
combination of the original features and the coefficients
aij in the linear combination are called “loadings”.

A picture of PCA starting from 2D -> 1D representation
Reconstruction error

The red point is represented in 1D by the green point – the position
orthogonal to the 1.PC (low-dim hyperplane) cannot be reconstructed,
instead the mean of (over all data) of this orthogonal direction is taken.

The reconstruction of the red point has an reconstruction-error equal to
the squared distance between red and green points.

1.PC

() () () () () ()
T

nxp nxp pxp nxp nxp pxpY X A X Y A    

PCA Rotation can be achieved by multiplying
X with an orthogonal rotation matrix A

The columns ak of A are given by the normalized
Eigenvector a of the the Covariance-matrix Sx

Construction of PCs in PCA

9

x6

y1

y2

y3

y4

6

1
 k jk j

j
y a x





PCA minimizes reconstruction error
over all available m data points

() () 2 2

1 1

ˆˆ|| || || ||
m m

i i
i i

i i
x x X X

 

     

The first k PCs define
k-dim hyperplane to which
sum of squared projection
errors is minimal

Reconstruct X with only k<p PCs:

 () () () ()
ˆ , 0 T

nxp nxk nxp k pxpX Y A 

x6

y1

y2

y3

y4

^

^

^

^

^

^

Dimensionality Reduction by an Autoencoder (AE)

encoding decoding

1 1 2 2 3z x w x w w  
y1

y2

y3

y b W x   ˆ ' Tx b W y  

 

() () 2
(n) ()

1

() () 2
(n) (n) () () () ()

1

reconstruction-error

ˆ|| ||

|| ' ||

m
i i

n
i

m
T i i

xk k kxn n n
i

x x

b W b W x x





 

    





()y f z

The k linear units of an AE with 1 hidden layer span the same hyperplane as 1to k-PCs

(3) (3) (3 x 5) (5) (5) (5) (5 x 3) (3)

Shallow and deep Autoencoder (AE)

AE allow to generalize PCA by using non-linear units or more hidden layers:

- Defining curved subspaces

- Defining non-linear, hierarchical, complex features

- Defining localized, distributed features (feature maps in convolutional architectures)

Deep AE are often hard to train ->
Use greedy layer-wise training of deep AE

Weight decay term
penalty, regularization

AE can be used for feature construction

R package: autoencoder

Use reconstruction error for abnormality detection
compare PCA and AE based methods

25 components of simulated Lorenz system 17 continuous sensor data from a satellite

PCA

AE
(1 non-linear hidden layer)

Mayu Sakurada
2015

A comparison of methods for compressing
digit images to 30 real numbers

real
data

30-D
deep auto

30-D
PCA

Slide taken from Hinton lectures

How to find documents that are similar to a query
document

Convert each document into a “bag of words”.
This is word count vector ignoring order.
Ignore stop words (like “the” or “over”) but still has a
length of >2000

We could compare word count vectors of the query
document and millions of other documents,
but this is too slow.

Approach: Reduce word count vectors to a much
smaller vector that still contains most of the
information about the content of the document.

fish
cheese
vector
count
school
query
reduce
bag
pulpit
iraq
word

0
0
2
2
0
2
1
1
0
0
2

Slide taken from Hinton lectures

How to compress the count vector

We train the neural network to
reproduce its input vector as its output

This forces it to compress as much
information as possible into the 10
numbers in the central bottleneck.

These 10 numbers are then a good
way to compare documents.

2000 reconstructed counts

500 neurons

2000 word counts

500 neurons

250 neurons

250 neurons

10

input
vector

output
vector

Slide taken from Hinton lectures

The non-linearity used for reconstructing bags of words

Divide the counts in a bag of words vector
by N, where N is the total number of non-
stop words in the document.

The resulting probability vector gives the
probability of getting a particular word if we
pick a non-stop word at random from the
document.

At the output of the autoencoder, we use a
softmax.

The probability vector defines the desired
outputs of the softmax.

We treat the word counts as
probabilities, but we make
the visible to hidden weights
N times bigger than the
hidden to hidden weights
take into account that we
have N observations from
the probability distribution.

Slide taken from Hinton lectures

First compress all documents to 2 numbers using PCA
Then use different colors for different categories.

Slide taken from Hinton lectures

Train on bags of 2000 words
for 400,000 training cases of
business documents.

First compress all documents to 2 numbers using deep auto.
Then use different colors for different document categories

Slide taken from Hinton lectures

Finding binary codes for documents

Train an auto-encoder using 30 logistic units
for the code layer.

During the fine-tuning stage, add noise to the
inputs to the code units. The noise forces their
activities to become bimodal in order to resist
the effects of the noise.

Then we simply threshold the activities of the
30 code units to get a binary code.

Krizhevsky discovered later that its easier to
just use binary stochastic units in the code
layer during training.

2000 reconstructed counts

500 neurons

2000 word counts

500 neurons

250 neurons

250 neurons

30 code=hash

Slide taken from Hinton lectures

Using a deep autoencoder as a hash-function for
finding approximate matches

hash
function

supermarket
search

Slide taken from Hinton lectures

Binary codes for image retrieval

Image retrieval is typically done by using the captions.
Why not use the images too?

Pixels are not like words:
individual pixels do not tell us much about the content.

Extracting object classes from images is hard (now it is possible!)

Maybe we should extract a real-valued vector that has information
about the content? Matching real-valued vectors in a big database is
slow and requires a lot of storage.

Short binary codes are very easy to store and match.

Slide taken from Hinton lectures Slide taken from Hinton lectures

Krizhevsky’s deep autoencoder

1024 1024 1024

8192

4096

2048

1024

512

256-bit binary codeThe encoder has
about 67,000,000
parameters.

There is no theory to
justify this architecture

It takes a few days on
a GTX 285 GPU to
train on two million
images.

32x32 images

Use many neurons,
since logistic units

have lower capacity

Slide taken from Hinton lectures

Reconstructions of 32x32 color images from 256-bit
codes

Slide taken from Hinton lectures

retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

Slide taken from Hinton lectures

retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

Slide taken from Hinton lectures

How to make image retrieval more sensitive to objects
and less sensitive to pixels

First train a big net to recognize lots of different types of objects in real images.

Use net that won the ImageNet competition

Then use the activity vector in the last hidden layer as the representation of the
image. Use e.g. the Euclidian distance between the activity vectors in the last
hidden layer.

This should be a much better representation to match than the pixel intensities.

Slide taken from Hinton lectures

Leftmost column
is the search
image.

Other columns
are the images
that have the
most similar
feature activities
in the last hidden
layer.

Slide taken from Hinton lectures

