
Deep Image Representations
with

Explainable Features

Vasily Tolkachev
ZHAW IDP

vasily.tolkachev@gmail.com

www.github.com/vastol

www.idp.zhaw.ch

ZHAW Datalab Seminar

19.06.2018

mailto:vasily.tolkachev@gmail.com
http://www.github.com/vastol
http://www.idp.zhaw.ch/

2

Motivation

 In the context of autoencoders, do we need features in the bottleneck layer
(representations) to be explanable? In general, is it needed for efficient
classification/clustering/transfer learning?

 How do we make a network learn explainable features?

 How do we avoid cases when just one feature group is used to reconstruct all
images, while other features are not fully exploited?

 Can we do image arithmetic with explainable features?

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016

Disentangling Factors of
Variation by Mixing Them

Paper review

Qiyang Hu, Attila Szabó, Tiziano Portenier, Matthias Zwicker, Paolo Favaro

4

Overview

 Goal: separate image features into semantically interpretable properties (factors
of variation). In case of face recognition these can be hair style, color, glasses,
smile etc.

 Data for evaluation: MNIST, Sprites (game avatars), CelebA (celebrities)

 Usage:

– transfer attributes from one image to another (man without glasses → man
with glasses)

– image retrieval/search and classification using the feature space

 Feature representation is considered disentangled if sufficiently accurate
classification can be achieved by simple linear classifier

 Novel invariance and classification loss types

5

Details

 Assumption: each factor of variation is encoded using its own feature vector,
which is called a feature chunk

 Invariance property:

̶ encoding of each image attribute into its feature chunk should be
invariant to transformations of any other image property.

̶ decoding of each chunk into its corresponding attribute should be
invariant to changes of other chunks.

 Invariance is achieved by a sequence of two mixing and unmixing
autoencoders.

 Need to avoid the Shortcut problem, when an encoder utilizes just one
feature chunk to reconstruct all images, not providing the meaningful
feature decomposition.

6

Network Architecture Overview

7

1. Sequence of Autoencoders

feature vector 𝑓𝑗 =

 𝑓𝑗
1

𝑑×1
…

 𝑓𝑗
𝑛

𝑑×1 𝑛×(𝑑×1)

where 𝑓𝑗
𝑖

𝑑×1
 is a 𝑖𝑡ℎ chunk of feature vector 𝑗

(𝑛 ∙ 𝑑)

(𝑛 ∙ 𝑑) (𝑛 ∙ 𝑑) (𝑛 ∙ 𝑑) (𝑛 ∙ 𝑑)

input
image

input
image

Chunk Dropout
Mask m

weight
 sharing

Chunk Dropout
Mask m

Mixing Loss

Mixing Loss

output
image

reconstructed
 mixed
image

8

2. Adversarial (Discriminator) Loss

input
image

reconstructed
 mixed image

 When the GAN objective reaches the global optimum, the distribution of

‘fake’ images should match the real image distribution.

 Hence, the adversarial loss is used to ensure that the mixed image 𝐱𝟑, which
is reconstructed by the first autoencoder, comes from the same distribution
as the original input image 𝐱𝟏

9

3. Classifier (cross-entropy) Loss

input
images

reconstructed
 mixed image

 A binary classifier takes input images 𝐱𝟏, 𝐱𝟐, 𝐱𝟑 and for every feature chunk
i decides if 𝐱𝟑 was generated using the corresponding chunk from 𝐱𝟏 or 𝐱𝟐.

 Combining the classifier and the chunk dropout mask m avoid the shortcut
problem

Chunk
dropout

mask

10

Overall Loss

11

Experiments

 DCGAN was used for encoder, decoder and discriminator

 AlexNet with batchnorm without dropout was used as the classifier

 The last fully connected layer of the encoder was taken as a feature vector,
then manually split into chunks.

 For evaluation on MNIST, 8 chunks were used

 For Sprites and CelebA, 64 chunks were used (otherwise lower rendering
quality)

 For CelebA the mixing loss had a greater weight, possibly to achieve better
rendering due to a semantically richer dataset

12

MNIST (60K images)

 The method was able to disentangle the labels and non-labelled attributes,
like rotation angle and stroke width (assigned by manual inspection)

 All recognizable variations seem to have been encoded in the three chunks

13

Sprites (120K images)

 Many body parts labels available (body shape, skin color hairstyle, etc.)
 Mixing autoencoder was able to disentangle 2 chunks, while adding just the

GAN loss improved rendering.

 The full loss is illustrated to improve performance, eliminates artefacts and
solves the shortcut problem

14

Sprites (120K images)

 Nearest neighbor classification was done on a chunk of the features and
mean average precision(mAP) was used to compare it with the true labels.

 Comparison to Autoencoder and other restricted versions of the model shows
a significant improvement in mAP:

15

CelebA (200K images)

16

CelebA (200K images)

 40 labeled binary attributes (gender, hair color, facial hair, etc.)

 DCGAN showed a more pronounced attribute transfer, while BEGAN blurred
out the changes

 The method recovered 5 semantically meaningful attributes: brightness,
glasses, hair color, hair style and pose/style.

 Since a class depends only on one chunk in the disentangled representation,
a linear classification in the whole disentangled (chunked) feature space was
evaluated. The results were slightly worse, but comparable with the latest
architectures DIP-VAE and beta-VAE.

17

Advantages

 No manual labeling required

 No need to isolate factors of variation beforehand or sample images where
only one factor changes

 Novel idea of classification into feature chunks

 Shortcut problem is solved with a classification loss forcing each feature
chunk to have a discernable effect

 Feature chucks can be high-dimensional in contrast with other papers

 In the disentangled feature space:

̶ linear classifier should yield high precision and recall

̶ Nearest neighbor search could successfully be used for image retrieval

18

Limitations

 How to choose the number of chunks(n) and their size? Not enough
heuristics/experiments/justification.

 To make feature chunks ‘meaningful’, each chunk was manually assigned to
a class (subjective!), making the procedure not completely unsupervised.

 Needs further evaluation on more semantically rich datasets (medicine, self-
driving cars).

 Feature space is only designed for attribute transfer and can’t be used for
sampling.

 What about datasets with artefacts (errors in the classes, strongly
unbalanced classes)?

19

Limitations

 More generally: is feature decomposition into chunks needed for precise and
efficient transfer learning?

 Because of the manual interpretation of chunks, the same argument as
SIFT/SURF features vs. end-to-end neural networks.

Thank you
for your attention!

