Introduction to variational autoencoders

Abstract

Variational autoencoders are interesting generative models, which combine ideas from deep learning with statistical inference. They can be used to learn a low dimensional representation \(Z \) of high dimensional data \(X \) such as images (of e.g. faces). In contrast to standard auto encoders, \(X \) and \(Z \) are random variables. It’s therefore possible to sample \(X \) from the distribution \(P(X|Z) \), thus creating e.g. images of faces, MNIST Digits, or speech.

I will also show some code. A TensorFlow notebook can be found at: https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/vae/vae_demo.ipynb
Introduction to variational autoencoders

Oliver Dürr

Datalab-Lunch Seminar Series
Winterthur, 11 May, 2016
Motivation: Generating Faces

Other examples
- random faces
- MNIST
- Speech

just google vae…

These are not part of the trainingset!

https://www.youtube.com/watch?v=XNZIN7Jh3Sg
Motivation: Generating Hand Written Digits

http://www.dpkingma.com/sgvb_mnist_demo/demo.html
Idea
Recap: Auto Encoders (‘classical’)
Recap: Linear Regression

Most people think of linear regression as points and a straight line:

\[x = \beta_0 + z\beta_1 \]

Strange axis names, to be compatible with later notation.
Recap: Linear Regression

Statisticians additionally have $P_\theta(X \mid Z)$

Benefits of having an error model:
- How likely is a data point
- Confidence bounds
- Compare models

$P(\sigma, \beta_0, \beta_1)(x \mid z) \propto e^{-\frac{(x-\hat{x}(z))^2}{2\sigma^2}}$

$\hat{x}(z) = \beta_0 + z\beta_1$

Strange axis names, to be compatible with later notation.

credit: wikipedia
Recap: Linear Regression (as a graphical model)

Statisticians additionally have $P_{\theta}(X \mid Z)$

$\hat{x}(z) = \beta_0 + z\beta_1$

$P_{(\sigma, \beta_0, \beta_1)}(x \mid z) \propto e^{-\frac{(x-\hat{x}(z))^2}{2\sigma^2}}$

Plate notation of a graphical model to show off

See Beates talk on Causal inference with graphical models
Going from \mathbb{R}^1 to \mathbb{R}^{10000}

$X \in \mathbb{R}^{10000}$

$Z \in \mathbb{R}^n$ typically $n = 2, ..., 50$

“latent space”

Is \mathbb{R}^2 “big enough” to create images from \mathbb{R}^{10000}? ...

credit: wikipedia, digits: https://www.youtube.com/watch?v=gyB8RegAlQ
Manifold hypothesis

- \(\mathbf{X} \) high dimensional vector
- Data is concentrated around a low dimensional manifold
- Hope finding a representation \(\mathbf{Z} \) of that manifold.
Variational auto encoders (idea of low dim manifold)

1D
Low Dimensional representation a line

2D
High Dimensional (number of pixels)

3D

credit: http://www.deeplearningbook.org/
Variational auto encoders (idea of low dim manifold)

Examples of successful unfolding (2D $\rightarrow \mathbb{R}^{28 \times 28}$, $\mathbb{R}^{20 \times 26}$)

MNIST:

Frey Face dataset:

2000 pictures of Brendan Frey (20x26)

How did they do that?
Variational Autoencoders ("history")

Simultaneously discovered by

Alternative approach (for binary distributions)

 - Has a more information theoretic ansatz (codings length)
 - Lecture given at Nando de Freitas ML Course (University of Oxford) (a bit hand waving argument but with nice examples)

- We focus on the approach as in Kingma, Welling
Principle Idea decoder network (graphical model)

- We have a set of N-observations (e.g. images) \(\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\} \)
- Complex model parameterized with \(\theta \)
- There is a latent space \(z \) with

\[
z \sim p(z) \quad \text{multivariate Gaussian}
\]

\[
x | z \sim p_\theta(x | z)
\]

Wish to learn \(\theta \) from the N training observations \(x^{(i)} i=1, \ldots, N \)
The model for the decoder network

- For illustration, z one dimensional x 2D
- Want a complex model of distribution of x given z
- Idea: NN + Gaussian (or Bernoulli) here with diagonal covariance Σ

$$x \mid z \sim N(\mu_x, \sigma^2_x)$$
Training as an autoencoder

Training use maximum likelihood of $p(x)$ given the training data

Problem:

$$p_\theta(z|x)$$

Cannot be calculated:

Solution:

- MCMC (too costly)
- Approximate $p(z|x)$ with $q(z|x)$
The model for the encoder network

- A feed forward NN + Gaussian

\[q_\phi(z \mid x) = \mathcal{N}(z; \mu_z(x), \sigma_z(x)) \]

Just a Gaussian, with diagonal covariance.
The complete auto-encoder

Learning the parameters ϕ and θ via backpropagation

Determining the loss function
Training: Loss Function

• What is (one of the) most beautiful idea in statistics?

• Max-Likelihood, tune Φ, θ to maximize the likelihood

• We maximize the (log) likelihood of a given “image” $x^{(i)}$ of the training set. Later we sum over all training data (using minibatches)
Lower bound of likelihood (mathematical sleight of hand)

Likelihood, for an image $x^{(i)}$ from training set. Writing $x=x^{(i)}$ for short.

\[L = \log (p(x)) \]

\[= \sum_z q(z|x) \log (p(x)) \]

\[= \sum_z q(z|x) \log \left(\frac{p(z, x)}{p(z|x)} \right) \]

\[= \sum_z q(z|x) \log \left(\frac{p(z, x)}{q(z|x)} \frac{q(z|x)}{p(z|x)} \right) \]

\[= \sum_z q(z|x) \log \left(\frac{p(z, x)}{q(z|x)} \right) + \sum_z q(z|x) \log \left(\frac{q(z|x)}{p(z|x)} \right) \]

\[= L^v + D_{KL} (q(z|x) \parallel p(z|x)) \]

\[\geq L^v \]

D_{KL} KL-Divergence ≥ 0 depends on how good $q(z|x)$ can approximate $p(z|x)$

L^v “lower variational bound of the (log) likelihood” $L^v = L$ for perfect approximation
Approximate Inference (rewriting L^y)

\[L^y = \sum_z q(z|x) \log \left(\frac{p(z, x)}{q(z|x)} \right) \]

\[= \sum_z q(z|x) \log \left(\frac{p(x|z)p(z)}{q(z|x)} \right) \]

\[= \sum_z q(z|x) \log \left(\frac{p(z)}{q(z|x)} \right) + \sum_z q(z|x) \log (p(x|z)) \]

\[= -D_{KL} (q(z|x) \| p(z)) + \mathbb{E}_{q(z|x)} (\log (p(x|z))) \]

\[= -D_{KL} (q(z|x^{(i)}) \| p(z)) + \mathbb{E}_{q(z|x^{(i)})} (\log (p(x^{(i)}|z))) \]

with \(p(z, x) = p(x|z) p(z) \)

Putting in \(x^{(i)} \) for \(x \)

Regularisation
\(p(z) \) is usually a simple prior \(N(0,1) \)

Reconstruction quality, \(\log(1) \) if \(x^{(i)} \) gets always reconstructed perfectly \((z \text{ produces } x^{(i)}) \)

Example \(x^{(i)} \)

\[q_\phi(z|x^{(i)}) \]

\[p_\theta(x^{(i)}|z) \]
Calculation the regularization

Use $N(0,1)$ as prior for $p(z)$

$q(z|x^{(i)})$ is Gaussian with parameters $(\mu^{(i)}, \sigma^{(i)})$ determined by NN

$$-D_{KL} \left(q(z|x^{(i)}) \| p(z) \right) = \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log(\sigma_{z_j}^{(i)^2}) - \mu_{z_j}^{(i)^2} - \sigma_{z_j}^{(i)^2} \right)$$
Sampling to calculate $\mathbb{E}_{q(z|x^{(i)})} \left(\log(p(x^{(i)}|z)) \right)$

Approximating $\mathbb{E}_{q(z|x^{(i)})}$ with sampling form the distribution $q(z|x^{(i)})$

With $z^{(i,l)}$ $l = 1, 2, \ldots L$ sampled from $z^{(i,l)} \sim q(z|x^{(i)})$

$$L^v = -D_{KL} (q(z|x^{(i)}) \| p(z)) + \mathbb{E}_{q(z|x^{(i)})} \left(\log(p(x^{(i)}|z)) \right)$$

$$L^v \approx -D_{KL} (q(z|x^{(i)}) \| p(z)) + \frac{1}{L} \sum_{i=1}^{L} \log(p(x^{(i)}| z^{(i,l)}))$$

Example $x^{(i)}$

$$\log(p_{\theta}(x^{(i)}|z^{(i,1)})) \quad \text{where} \quad z^{(i,1)} \sim N(\mu_{Z}^{(i)}, \sigma_{Z}^{2(i)})$$

$$\ldots$$

$$\log(p_{\theta}(x^{(i)}|z^{(i,L)})) \quad \text{where} \quad z^{(i,L)} \sim N(\mu_{Z}^{(i)}, \sigma_{Z}^{2(i)})$$

L is often very small (often just $L=1$)
One last trick

Backpropagation not possible through random sampling!

Sampling (reparametrization trick)

\[z^{(i,l)} \sim N(\mu^{(i)}, \sigma^{2(i)}) \]

\[z^{(i,l)} = \mu^{(i)} + \sigma^{(i)} \odot \varepsilon_i \quad \varepsilon_i \sim N(0,1) \]

Writing \(z \) in this form, results in a deterministic part and noise.

Cannot back propagate through a random drawn number

\(z \) has the same distribution, but now one can back propagate.

Image from: NIPS Workshop 2015 (Kingma & Welling)
Prior $p(z) \sim N(0,1)$ and p, q Gaussian, extension to $\text{dim}(z) > 1$ trivial

Cost: Regularisation

$$-D_{KL} (q(z|x^{(i)}) \| p(z)) = \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log(\sigma_{z_j}^{(i)^2}) - \mu_{z_j}^{(i)^2} - \sigma_{z_j}^{(i)^2} \right)$$

Cost: Reproduction

$$-\log(p(x^{(i)} | z^{(i)})) = \sum_{j=1}^{D} \frac{1}{2} \log(\sigma_{x_j}^2) + \frac{(x_j^{(i)} - \mu_{x_j})^2}{2\sigma_{x_j}^2}$$

We use mini batch gradient decent to optimize the cost function over all $x^{(i)}$ in the mini batch

Least Square for constant variance
Use the source Luke

Simple example 2-D distribution

Simple MNIST Example
https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/vae/vae_demo.ipynb
Recent developments of VAE
Recent developments in VAE / generative models (subjective overview)

- Authors of VAE Amsterdam University and Google DeepMind teamed up and wrote a paper on semi-supervised learning:

- Karl Gregor et al. extended the (binary autoencoder) with attention
 - DRAW: A Recurrent Neural Network For Image Generation
 - https://www.youtube.com/watch?v=Zt-7MI9eKEo

- Adversial networks as a non-statistical way to generate high dimensional data
 - Play a game:
 - Fist network invents some data $P(X)$ to fool second network
 - Second network tells if first network is a liar.
Semisupervised learning

Slide: Kingma, Rezendem Nohamed, Welling
Semisupervised learning

VAEs are SOTA on semi-supervised learning on MNIST

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtlasRBF (Pitelis et al., 2014)</td>
<td>8.10% (±0.95)</td>
</tr>
<tr>
<td>Deep Generative Model (M1+M2) (Kingma et al., 2014)</td>
<td>3.33% (±0.14)</td>
</tr>
<tr>
<td>Virtual Adversarial (Miyato et al., 2015)</td>
<td>2.12%</td>
</tr>
<tr>
<td>Ladder (Rasmus et al., 2015)</td>
<td>1.06% (±0.37)</td>
</tr>
<tr>
<td>Auxiliary Deep Generative Model (1 MC)</td>
<td>2.25% (± 0.08)</td>
</tr>
<tr>
<td>Auxiliary Deep Generative Model (10 MC)</td>
<td>0.96% (± 0.02)</td>
</tr>
</tbody>
</table>

That’s 10 per class!

“Improving Semi-Supervised Learning with Auxiliary Deep Generative Models”
[Maaløe, Sønderby, Sønderby and Winter, 2015]
Thank you, questions?