How to use the docker container for the course
We provide a docker image oduerr/tf_docker:tf1_py3 with Tensorflow (v1.0.0) , TFLearn, Keras, and many other pre-installed python libraries (numpy, pandas).
Installation of docker
- The official installation guide can be found at: https://docs.docker.com/engine/installation/
- For hints how to use docker on Windows see here
- In case that the docker installation does not work we have an addition installation guide for installing Tensorflow directly on Windows.
Running the container
In the docker command line execute:
docker run -p 8888:8888 -p 6006:6006 -it oduerr/tf_docker:tf1_py3
open http://localhost:8888/?token=tensorchiefs or http://192.168.99.100:8888/tree?token=tensorchiefs(for windows) in the browser.
Running with a linked file system.
If you want to access a directory here (/Users/oli/Documents/workspace/dl_tutorial/) from inside the docker container execute:
docker run -p 8888:8888 -p 6006:6006 -v /Users/oli/Documents/workspace/dl_tutorial/:/notebooks/local/ -it oduerr/tf_docker:tf1_py3
Updating
Please make sure to use the latest container by updating it using
docker pull oduerr/tf_docker:tf1_py3
Other useful hints for docker
Starting in bash
In case you want to not start the jupyter notebook sever automatically but want a bash shell do:
docker run -p 8888:8888 -p 6006:6006 -it oduerr/tf_docker:tf1_py3 bash
Local vs Inside container
The entry before the colon ‘:’ is on the local machine, the one after it inside the container. Examples:
docker run -p 4242:8888 -it oduerr/tf_docker:tf1_py3 #4242 is the port on the local machine, 8888 inside the container
docker run -v /tmp/dl_tutorial/:/notebooks/dl_tutorial/ #/tmp/dl_tutorial is on local machine