How to use the docker container for the course

We provide a docker image oduerr/tf_docker:tf1_py3 with Tensorflow (v1.0.0) , TFLearn, Keras, and many other pre-installed python libraries (numpy, pandas).

Installation of docker

Running the container

In the docker command line execute:

docker run -p 8888:8888 -p 6006:6006 -it oduerr/tf_docker:tf1_py3

open http://localhost:8888/?token=tensorchiefs or http://192.168.99.100:8888/tree?token=tensorchiefs(for windows) in the browser.

Running with a linked file system.

If you want to access a directory here (/Users/oli/Documents/workspace/dl_tutorial/) from inside the docker container execute:

docker run -p 8888:8888 -p 6006:6006 -v /Users/oli/Documents/workspace/dl_tutorial/:/notebooks/local/ -it oduerr/tf_docker:tf1_py3

Updating

Please make sure to use the latest container by updating it using

docker pull oduerr/tf_docker:tf1_py3

Other useful hints for docker

Starting in bash

In case you want to not start the jupyter notebook sever automatically but want a bash shell do:

docker run -p 8888:8888 -p 6006:6006 -it oduerr/tf_docker:tf1_py3 bash

Local vs Inside container

The entry before the colon ‘:’ is on the local machine, the one after it inside the container. Examples:

  docker run -p 4242:8888 -it oduerr/tf_docker:tf1_py3 #4242 is the port on the local machine, 8888 inside the container
  docker run -v /tmp/dl_tutorial/:/notebooks/dl_tutorial/ #/tmp/dl_tutorial is on local machine