Fully connected neural network on MNIST dataset (Tricks)
Note for docker users.
- In this notebook we create different runs so it might be beneficial to save them also outside the docker container. This is possible using the -v option when starting docker.
docker run -p 8888:8888 -p 6006:6006 -v /Users/oli/Documents/workspace/dl_course/:/notebooks/ -it oduerr/tf_docker:tf1_py3
- If you experience crashes of the docker container do a two step procedure. First start docker in bash.
docker run -p 8888:8888 -p 6006:6006 -v /Users/oli/Documents/workspace/dl_course/:/notebooks/ -it oduerr/tf_docker:tf1_py3 bash
Then start the jupyter notebook in the console with
jupyter notebook --NotebookApp.token=tensorchiefs
a) Open the notebook fcn_MNIST_keras and run the first model (execute the cell after training) and visualize the result in TensorBoard (have a look at learning curves and the histograms / distributions of the weights)
b) Remove the init='zero'
argument of the dense layers, to have a proper internalization of your weights. Change the name from name = 'sigmoid_init0'
to name = 'sigmoid'
. Restart the kernel and repeat the training as in a). Compare the results in TensorBoard, describe your results.
c) Change the activations / non-linearities from Activation('sigmoid')
to Activation('relu')
and change the name from name = 'sigmoid'
to name = 'relu'
. Continue as above, especially have a look at the validation loss do you observe overfitting.
d) Add a dropout layer: Now add a dropout layer model.add(Dropout(0.3))
between the Dense-Layer and the Activation. Change the name from name = 'relu'
to name = 'dropout'
.
e) Add a batch-normalization: Now add a batch-norm layer model.add(BatchNormalization())
between the Dense-Layer and the Dropout. Change the name from name = 'dropout'
to name = 'batch_dropout'
. Continue as above
The network should look like:
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
dense_1 (Dense) (None, 500) 392500 dense_input_1[0][0]
____________________________________________________________________________________________________
batchnormalization_1 (BatchNorma (None, 500) 2000 dense_1[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout) (None, 500) 0 batchnormalization_1[0][0]
____________________________________________________________________________________________________
activation_1 (Activation) (None, 500) 0 dropout_1[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 50) 25050 activation_1[0][0]
____________________________________________________________________________________________________
batchnormalization_2 (BatchNorma (None, 50) 200 dense_2[0][0]
____________________________________________________________________________________________________
dropout_2 (Dropout) (None, 50) 0 batchnormalization_2[0][0]
____________________________________________________________________________________________________
activation_2 (Activation) (None, 50) 0 dropout_2[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 10) 510 activation_2[0][0]
====================================================================================================
Total params: 420,260
Trainable params: 419,160
Non-trainable params: 1,100