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» All unidentified animals are assigned to
the same class new_whale. This class
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image = Image.open(i)
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if not os.path.exists(new_image filename):
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image = image.convert('L")
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Outcome & ldeas

» As root cause for the bad generalization of the CNN, the dominant
new_whale class with its high variety of different whales was identified.

One of the first test run with a minimal CNN
model. With data harmonization but without any
additional data generation.

» For further proceedings, this class was split into many smaller
subclasses as well as completely ignored during the training.

TR " The model is heavily overfitting. Training set
learning rate ist great but validation is nearly a
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Data Set Description:

After centuries of intense whaling, recovering whale populations still have a hard time adapting to warming oceans and struggle to compete every day with the industrial fishing industry for food.
To aid whale conservation efforts, scientists use photo surveillance systems to monitor ocean activity. They use the shape of whales’ tails and unigue markings found in footage to identify what
species of whale they’re analyzing and meticulously log whale pod dynamics and movements. For the past 40 years, most of this work has been done manually by individual scientists, leaving a huge

trove of data untapped and underutilized.

In this competition, you're challenged to build an algorithm to identifying whale species in images. You’ll analyze Happy Whale’s database of over 25,000 images, gathered from research institutions
and public contributors. By contributing, you’ll help to open rich fields of understanding for marine mammal population dynamics around the globe.
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