
Land cover classification:
Squeezing the lemon with AutoML

9.4.2019
Timo Grossenbacher

ZHAW CAS MAIN
Module "Deep Learning"

timo@timogrossenbacher.ch
Code: github.com/grssnbchr/ml_dl_assignment_2019

The task & data set Simple CNN approach AutoML with AutoKeras

The "shallow" baseline

Conclusions & Learnings

The goal of this assignment is to correctly predict
one out of six different land cover classes given an
input aerial image. The dataset at hand is the SAT-6
Airborne Dataset as avai lable on Kaggle [0]:

> 405'000 label led 28x28px images with 4 channels
(RGB + NIR)
> Test set size: 81'000

Only 10% of the
original data were
retained, and only 80%
of that were used as
training data (25'920
images). 20% were left
as hold-out val idation
set for prel iminary
tests (6480 images).

A "shal low" (as opposed to "deep") model , namely a
Random Forest with ~1800 trees, was trained on
the same training data as part of the ML course
module. I t reached an accuracy of 99.0% on the
whole test set.

Before training, extensive preprocessing was
appl ied to the data: A fifth channel (NDVI) was
calculated, the pixel values were standardized, and
the dimensional ity was heavi ly reduced through the
calcuation of mean and st. dev. of each channel .

In the first iteration, a simple
convolutional neural network with
3 convolution and 3 maxpool ing
layers each and a total of
~700'000 trainable parameters
was trained on the training data
(see architecture on the right
side).

The data were fed to the model as
is (no preprocessing as in
basel ine). The model was trained
for 30 epochs, which took about
40 minutes with GPU acceleration.
After this, the model reached an
accuracy of 97.3% on the test set.

As can be seen from the below
training history, the model
suffered from overfitting early on.
After around 15 epochs, the
val idation accuracy didn't improve
anymore.

AutoML, specifical ly Neural Architecture Search
(NAS), is an optimization technique where the
best hypothesis space is searched automatical ly.
This takes considerable resources but is easy to
use, i .e. with Google's AutoML or with the open
source AutoKeras package [1]:
autoclf = ImageClassifier()

autoclf.fit(X_train, y_train, time_limit=3 * 60 *

60)

autoclf.final_fit(X_train, y_train, X_val, y_val,

retrain=True)

After 2 hours of search (with max. 15 epochs per
model) , AutoKeras had tried out 3 different
architectures. The best architecture had an
accuracy of 99.2% on the whole test set – which
is only sl ightly better than the basel ine but quite
a bit better than the simple CNN. However, the
resulting architecture is much more complex and
has ~10 times more parameters. A smal l part of
it can be seen on the right side.

1. Deep learning models for image classification are
not always better than "shal low" models l ike
Random Forests (and they take longer to train).

2 . AutoML only makes sense if a) smal l
improvements have a large impact b) enough
resources (distributed GPUs) are avai lable.

3. However, AutoKeras found a reasonably good
CNN without any effort on the user-side.

References: [0] https: //www.kaggle.com/crawford/deepsat-sat6, [1] Auto-Keras: Efficient Neural Architecture Search with Network Morphism (2018). Haifeng J in, Qingquan Song, and Xia Hu.

