
Deep Learning Day

Recurrent Neural Networks (RNNs)

Oliver Dürr

Institut für Datenanalyse und Prozessdesign
Zürcher Hochschule für Angewandte Wissenschaften

Winterthur, 22th Sep 2017

1

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t)
= f(h(t�1), x(t)

; ✓), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)

) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(...)h(...) h(...)h(...)

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a

376

wiederkehrend	

Example of RNNs: Image Captioning

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

Examples of RNN: Sentiment Analysis

•  “I’d rather would have lunch instead of going to the boring workshop”
–  Negative

•  “The talk was not so bad after all.”
–  Positive

Task:
 Characters à Sentiment of Sentence
 Word(embeddings) à Sentiment of Sentence

3

Example of RNN: char level language model

4

Take softmax to get
probabilities

p(‘o’|’hell’)

1.0

Illustration: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Example: (see tutorial)

5

Alive in ER

Clinical Measurements and other data

Use cases of RNNs

Recurrent neural networks (RNN) are used to model sequences or time steps

E.g. Image
Captioning.
Image -> Seq
of words

E.g. Sentiment
Classification.
Seq of words
àSentiment

E.g. Language models.
seq of letters àseq of letters
Predicting the next letter

Here (patient data) àdead or alive

Illustration: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

An inner state ht produces
some output [triggered by
input]

We focus on the time
evolution of the inner state,
first.

6

Properties of the inner state

7

This state h(t) contains all the relevant
information from the past.

We can
forget
about the
past

h(t-1)

h(t-1)

x(t) x(t-1) x(t-2)

x(t)

x(t) and h(t) are sufficient.
•  We don’t need older times.

h(t) summarizes / abstracts (x(1),…,x(t-1))

h(t)

h(t)

2 ways to draw

Illustration: http://www.deeplearningbook.org/

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t)
= f(h(t�1), x(t)

; ✓), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)

) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(...)h(...) h(...)h(...)

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a

376

Left: Circuit Diagram (black square delay of one time step)
Right: Unrolled / unfolded

State hidden unit in network

Network is driven by sequence x(t) (a vector)

h(t)	summarizes	/	abstracts		
(x(1),…,x(t-1))		

Same	for	all	>mes	(recurrent)		

W

8

Weight Sharing: Key to success
Weight Sharing

Recurrent neural network shares weights between time-steps

y

1

y

2

... y

n

h

0

w

//
h

1

w

//

OO

h

2

w

//

OO

...
w

//
h

n

OO

x

1

OO

x

2

OO

... x

n

OO

Convolutional neural network shares weights between local regions

w1

w1

w2

w2

x

h1

h2

Slide Credit: David Sliver 9

RNN with Matrix Multiplication and Non-linearity

Illustration: http://www.deeplearningbook.org/ http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.

UU

VV

WW

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WWWW WW WW

h(...)h(...) h(...)h(...)

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ˆy = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

378

Appending columns
at vector W =

Wh

U

⎛

⎝
⎜

⎞

⎠
⎟

Alternative view (Colah’s Drawing)

h(t) = tanh(h(t−1)Wh + x
(t)U + b)

Wh Wh Wh

h(t) = tanh([h(t−1), x(t)]W + b) = tanh(h(t−1)Wh + x
(t)U + b)

Network is defined completely
by W.

W depend on size of hidden
state and input

h(t)	is	vector,	size	controls	
complexity.			

10

Training the weights

•  We add an output
–  Depend on task

•  We add a loss function
–  Depend on task

•  We train using standard back propagation

11

Example 2

Illustration: http://www.deeplearningbook.org/

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.

UU

VV

WW

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WWWW WW WW

h(...)h(...) h(...)h(...)

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ˆy = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

378

A sequence x(t) corresponds to an outcome at each time step outcomes y
•  x letter in a string of letters
•  y next letter

L(t) = y(t) ⋅ log(ŷ(t))

L = L(t)
t
∑

For categorical and one hot

W,V,U,b,c are learnt

13

The Art of Deep Learning

14
Thanks to Lukas Tuggner for pointing me to:
Taken from: http://futureai.media.mit.edu/wp-content/uploads/sites/40/2015/09/GRID-LSTM.pptx_.pdf

Other architectures: Deep RNNs

Illustration: http://www.deeplearningbook.org/ and : http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Simply use the output h as a new input. Other approaches are possible, see e.g.
DL-book

Input

Hidden 1

Hidden 2

Output Deepness controls
complexity

15

Vanishing Gradient

Vanishing Gradient

•  Long range dependencies can be found for many systems and are
important to model.
–  Example in text understanding:
 Lisa was born in Springfield (USA) …she can speak fluently English.

 Long range dependency (USA and English)

•  Long range interactions cannot be trained with standard RNN
–  Vanishing Gradient (Hochreiter 1991, Diplomarbeit “Untersuchungen zu

dynamischen neuronalen Netzen”)

•  We don’t fix the training, we change the model

–  RNN-cell àLTSM-cell

Slide credit: Colah’s blog 17

Replacing RNN Cells with LSTM Cells

Standard RNN-Cell

LSTM-Cell
Complicated inner state

#cell = tf.nn.rnn_cell.BasicRNNCell(state_size)
cell = tf.nn.rnn_cell.BasicLSTMCell(state_size)

In TensorFlow:

18 Slide credit: Colah’s blog

Training of LSTMs

19

Training: shape to the tensors

•  Done in mini-batches to benefit from parallel power on GPU

20

time

batch-size

input dimension

(batch-size, time, input dimension) X

time
output dimension

(batch-size, time, output dimension) Y
batch-size

Note that tensorshapes need to be fixed

Training: (Last hint for Tutorial) Technical Detail Masking

•  Sometimes sequences have different length

•  Solution
–  Clamp all to fixed size e.g. 500
–  If too short

•  Use masking to indicate if cell ends earlier

21

Resources

•  Many figures are taken from the following resources:
–  Deep Learning Book chap10

•  http://www.deeplearningbook.org/contents/rnn.html
–  CS231n

•  Lecture on RNN: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf
•  Video to CS231n https://www.youtube.com/watch?v=iX5V1WpxxkY

–  CAS Machine Intelligence
•  https://tensorchiefs.github.io/dl_course/

–  Blog Posts
•  Karpathy, May 2015: The unreasonable effectiveness of Recurrent Neural

Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/
•  Colah, August 2015: Understanding LSTM Networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
•  R2RT, July 2016: http://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html
•  WildML, August 2016: Praktical consideration e.g. how to use sequences with

different length.
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-
undocumented-features/

•  Further ipython notebooks:

–  https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/RNN

22

Backup

23

Image Captioning

Slides taken from: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

h0

x0
<STA
RT>

y0

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

Image Captioning

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

h0

x0
<STA
RT>

y0

<START>

test image

straw

sample!

The image is only feed in the first
time

Image Captioning

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

Image Captioning

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

sample!

Image Captioning

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

Image Captioning

Illustration: http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

h0

x0
<STA
RT>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

