Deep Learning Day

wiederkehrend

Recurrent Neural Networks (RNNs)

Oliver Dürr

Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Winterthur, 22th Sep 2017

Example of RNNs: Image Captioning

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"a woman holding a teddy bear in front of a mirror."

"boy is doing backflip on wakeboard."

"a horse is standing in the middle of a road."

"a young boy is holding a baseball bat."

"a cat is sitting on a couch with a remote control."

Examples of RNN: Sentiment Analysis

- "I'd rather would have lunch instead of going to the boring workshop"
 Negative
- "The talk was not so bad after all."
 - Positive

Task:

Characters \rightarrow Sentiment of Sentence Word(embeddings) \rightarrow Sentiment of Sentence

Example of RNN: char level language model

Illustration: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Example: (see tutorial)

Clinical Measurements and other data

Use cases of RNNs

Recurrent neural networks (RNN) are used to model sequences or time steps

An **inner state** h_t produces some output [triggered by input]

We focus on the time evolution of the inner state, first.

E.g. Image Captioning. Image -> Seq of words E.g. Sentiment Classification. Seq of words →Sentiment

E.g. Language models. seq of letters →seq of letters Predicting the next letter

Here (patient data) \rightarrow dead or alive

Illustration: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Properties of the inner state

x^(t)

past

This state h^(t) contains all the relevant information from the past.

x^(t) and h^(t) are sufficient.

• We don't need older times.

 $h^{(t)}$ summarizes / abstracts $(x^{(1)}, \dots, x^{(t-1)})$

2 ways to draw

Network is driven by sequence x(t) (a vector)

Left: Circuit Diagram (black square delay of one time step) Right: Unrolled / unfolded

State hidden unit in network

Weight Sharing: Key to success

Recurrent neural network shares weights between time-steps

Convolutional neural network shares weights between local regions

Slide Credit: David Sliver

RNN with Matrix Multiplication and Non-linearity

$$h^{(t)} = \tanh(h^{(t-1)}W_h + x^{(t)}U + b)$$

$$h^{(t)} \text{ is vector, size controls complexity.}$$

Alternative view (Colah's Drawing)

Network is defined completely by W.

W depend on size of hidden state and input

Illustration: http://www.deeplearningbook.org/ http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Training the weights

- We add an output
 - Depend on task
- We add a loss function
 - Depend on task
- We train using standard back propagation

Example 2

A sequence x^(t) corresponds to an outcome at each time step outcomes y

- x letter in a string of letters
- y next letter

For categorical and one hot

The Art of Deep Learning

Thanks to Lukas Tuggner for pointing me to: Taken from: <u>http://futureai.media.mit.edu/wp-content/uploads/sites/40/2015/09/GRID-LSTM.pptx_.pdf</u>

Other architectures: Deep RNNs

Simply use the output h as a new input. Other approaches are possible, see e.g. DL-book

Illustration: http://www.deeplearningbook.org/ and : http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Vanishing Gradient

Vanishing Gradient

- Long range dependencies can be found for many systems and are important to model.
 - Example in text understanding:
 - Lisa was born in Springfield (USA) ... she can speak fluently English.

Long range dependency (USA and English)

- Long range interactions cannot be trained with standard RNN
 - Vanishing Gradient (<u>Hochreiter 1991</u>, Diplomarbeit "Untersuchungen zu dynamischen neuronalen Netzen")
- We don't fix the training, we change the model
 - RNN-cell →LTSM-cell

Slide credit: Colah's blog

Replacing RNN Cells with LSTM Cells

In TensorFlow:

#cell = tf.nn.rnn_cell.BasicRNNCell(state_size)
cell = tf.nn.rnn_cell.BasicLSTMCell(state_size)

Slide credit: Colah's blog

Training of LSTMs

Training: shape to the tensors

• Done in mini-batches to benefit from parallel power on GPU

Note that tensorshapes need to be fixed

Training: (Last hint for Tutorial) Technical Detail Masking

- Sometimes sequences have different length
- Solution
 - Clamp all to fixed size e.g. 500
 - If too short
 - Use masking to indicate if cell ends earlier

Resources

- Many figures are taken from the following resources:
 - Deep Learning Book chap10
 - <u>http://www.deeplearningbook.org/contents/rnn.html</u>
 - CS231n
 - Lecture on RNN: <u>http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf</u>
 - Video to CS231n <u>https://www.youtube.com/watch?v=iX5V1WpxxkY</u>
 - CAS Machine Intelligence
 - <u>https://tensorchiefs.github.io/dl_course/</u>
 - Blog Posts
 - Karpathy, May 2015: The unreasonable effectiveness of Recurrent Neural Networks <u>http://karpathy.github.io/2015/05/21/rnn-effectiveness/</u>
 - Colah, August 2015: Understanding LSTM Networks
 <u>http://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>
 - R2RT, July 2016: <u>http://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html</u>
 - WildML, August 2016: Praktical consideration e.g. how to use sequences with different length. <u>http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-andundocumented-features/</u>
- Further ipython notebooks:
 - <u>https://github.com/oduerr/dl_tutorial/blob/master/tensorflow/RNN</u>

test image

Slides taken from: http://cs231n.stanford.edu/slides/winter1516 lecture10.pdf

test image

