Automatic classification of mammographic breast density

PD Dr. Cristina Rossi
cristina.rossi@usz.ch

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
Automatic classification of mammographic breast density

Alexander Ciritsis, Cristina Rossi, Ilaria De Martini, Matthias Eberhard, Magda Marcon, Anton S. Becker, Nicole Berger, Andreas Boss

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
Contents

• Machine Learning on Medical Imaging Data - Radiologists’ Perspective

• Automatic classification of mammographic breast density

• Can we apply this science?
• Acquire Patient Information
• Select Adequate Modality
• Acquire Images
• Describe Findings
• Integrate Knowledge
• Classify
• Act/Recommend
• Understand the clinical problem

• Target those tasks that
 • profit from standardization
 • are tedious (but still require a long training period)

• Provide transparent solutions that
 • mimic the human decision making process
 • are adaptable to the clinical workflow
Contents

• Machine Learning on Medical Imaging Data - Radiologists’ Perspective

• Automatic classification of mammographic breast density

• Can we apply this science?
Automatic classification of mammographic breast density (BD)

- Women with high BD have a 2- to 6-fold increased risk of developing breast cancer\(^1\)
- For dense breast the sensitivity of the screening mammography drops from 87% to 63\(^2\)
- Patients with high BD require additional imaging, such as tomosynthesis, ultrasound or breast MR to increase the cancer detection chances\(^3\)

\(^3\)Berg et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151-63
Automatic classification of mammographic breast density (BD)

- ACR-BD classification is observer-dependent (inter-reader agreement ranging between 0.43 and 0.89) \(^1\)
- Radiologists routinely reading mammographies perform better \(^2\)

Automatic classification of mammographic breast density (BD)

- **Data**: 20,578 diagnostic mammography views from 5,221 unique patients (age = 58±12 years) acquired between 2012 and 2013.

- **Labeling**: views of the single patient were linked to the ACR BI-RADS density from the corresponding radiological report using a home-written text searching MATLAB script (Release 2013b, MathWorks, Natick, MA, USA).

- **Balanced dataset**: 12,932 labeled mammography views were successfully linked to the ACR BI-RADS density from the corresponding radiological report. After data augmentation (ImageDataGenerator Keras) a balanced training and validation dataset subdivided into 4 classes composed of n = 22,414 MLO projections and n = 22,439 CC projections was available.
Automatic classification of mammographic breast density (BD)

Hardware and software: consumer-grade desktop computer equipped with an Intel i7-7700 CPU with 16 GB RAM and an NVIDIA 1080 GTX graphics processing unit with 8 GB graphics RAM. The computer was running Ubuntu Linux 16.04 with Tensorflow 1.0.1.
Automatic classification of mammographic breast density (BD)

Performance over the validation dataset

<table>
<thead>
<tr>
<th>View</th>
<th>Accuracy</th>
<th>Number of epochs</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediolateral Oblique</td>
<td>90.9 %</td>
<td>91</td>
<td>20.3 hours</td>
</tr>
<tr>
<td>Cranio-Caudal</td>
<td>90.1 %</td>
<td>94</td>
<td>21.6 hours</td>
</tr>
</tbody>
</table>
Automatic classification of mammographic breast density (BD)
Test against the expert readers’ consensus: CC view

Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>94.7%</td>
<td>5.3%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>B</td>
<td>20.7%</td>
<td>79.3%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>C</td>
<td>0.0%</td>
<td>2.7%</td>
<td>75.7%</td>
<td>21.6%</td>
</tr>
<tr>
<td>D</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

ROC space

Cohen’s kappa
Automatic classification of mammographic breast density (BD)

Test against the expert readers’ consensus: MLO view

ROC space

Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>89.5%</td>
<td>10.5%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>B</td>
<td>9.1%</td>
<td>87.9%</td>
<td>3.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>C</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>D</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.7%</td>
<td>91.3%</td>
</tr>
</tbody>
</table>
Automatic classification of mammographic breast density (BD)

- The dCNN allows for accurate classification of breast density based on the ACR BI-RADS system.
- The performance of the dCNN are comparable to those of experienced radiologists.
- The proposed technique may allow accurate, standardized, and observer independent breast density evaluation of mammographies.
Contents

• Machine Learning on Medical Imaging Data - Radiologists' Perspective

• Automatic classification of mammographic breast density

• Can we apply this science?
Can we apply this science?

Mammography → MD>c → Ultrasound

False → Imaging Data → Diagnosis

http://www.diagnosticimaging.com/radiology-comics/
Can we apply this science?

Applied sciences: sciences that are put to practical use. (Collins)

- **Number of recall examinations**
- **Efficiency radiographer´s workflow**
 - The reduction of recall examinations is cost saving and relieves the psychological burden on patient
- **Patient satisfaction**
 - Efficient workflow improves patient’s perception of the safety and efficiency of the provided care
 - Standardized assessment of high BD allows the prompt schedule of the US
Thank you
Grazie mille

Project name
Artificial Intelligence in oncological Imaging Network