iry .*‘.i e A J
“: id ,vl? &:) '\‘ N
TensorkFlow

Overdoing linear regression with TensorFlow

Oliver Durr

27.09.18

Outline

Background

 Whatis deep learning

 Whatis linear regression

« Why linear regression is of interest in this area
« Solving linear regression the DL way

« Gradient Descent

TensorFlow (as an example of a DL framework)
« Computational Graph
« Gradient Flow in a computational graph

What is DL (in 4 slides)

Why DL: Imagene'r 2012, 2013, 2014, 2015

1000 classes
1 Mio samples

container s
container ship
lifeboat
amphibian
fireboat
drilling platform

Human: 5% misclassification

Traditional CV @ Deep Learning

Only one non-CNN
approach in 2013

2
o
o
<}
=
i

GooglLeNet 6.7%

A. Krizhevsk 2015: It gets tougher
Y 4.95% Microsoft (Feb 6 surpassing human performance 5.1%)

first CNN in 2012 4.8% Google (Feb 11) -> further improved to 3.6 (Dec)?

Und es hat zoom gemacht 4.58% Baidu (May 11 banned due too many submissions)
3.57% Microsoft (Resnet winner 2015)

Figure: https://medium.com/global-silicon-valley/machine-learning-yesterday-today-tomorrow-3d3023¢c7b519

Application Areas of DL

Input x to DL model Output y of DL model Application

Label Image classification
“Tiger”

Sequence / Text Voice Recognition
“see you tomorrow”

ASCII-Sequences Unicode-Sequences Translation
“Hallo, wie gehts?” “PRUF, PRI ?”
ASCIlI-Sequence Label (Sentiment) Sentiment Analysis
This movie was rather good positive
Structured Data P(“user clicks on add”) Click prediction
city=‘london’, device=‘mobile’
Agent .
Reward for last Action ,tﬂ,"] Action De.ep
State of the world ﬂml' Reinforcement

Learning e.g. GO

Main Idea in DL

DEEP NEURAL NETWORK (DNN)

Raw data Low-level features

LN 3 AVa | =
o BEROmORHE e
Eﬁ&:t‘ (] EEr T

==

Application components:

B
— |

Task objective
e.g. ldentify face
Training data
10-100M images
Network architecture
~10 layers
1B parameters
Result Learning algorithm
~30 Exaflops
~30 GPU days

@A NVIDIA.

Learn hierarchy of features

A DL model: Fully Connected aka MLP

Q Input Layer
Q Hidden Layer
O Output Layer

* The input: e.g. intensity values of pixels of an image

» Information is processed layer by layer

» Output: probability that image belongs to certain person
» Arrows are weights (these need to be learned)

» For image and text there are specialized architectures (CNN, RNN)

The learning process

* Three ingredients

— A model with weights, which needs to be learned
— Data with labels (reinforcement is a bit different)

— Aloss function, describing who good the data is fit with the model

« Learning is tuning the weights to fit the training data

Linear Regression

10

An introductory remark

Judea Pearl - fellow ACM, Turing Award winner

<<All the impressive achievements of deep learning amount to just curve fitting>>
Judea Pearl, 2018

Let's look at the simplest curve fitting model: linear regression

11

Linear Regression: See Backbord

Model \haty =a*x+ b | Training Data
Linear Regression as a mother of all (x and y pairs)
networks Plot

Kriterium RSS

Tuning the weights

LINEAR REGRESSION
x=-295 y=-0.80

Graph:

B Guessed fit

Guessed fit errors

5
4
3
2
1
0
A -
2 4
-3 4
4 4
S 4

Eei'.f'n = 0.920

http://mathlets.org/mathlets/linear-regression/

+ help

Data:
Add point

Remove point
Random

Preset

Clear

ABCDETFGHII

13

G6radient Descent: 1-D function See Backbord

Gradient and Gradient Descent

14

Demo for influence of step size

Set learning rate: O - 0.01
Execute single step: STEP 0
Reset the graph: RESET

Loss vs. Weight

10.0
75 T

g 5.0
2.5
00 0 1 2* 3 4

value of weight

https://developers.google.com/machine-learning/crash-course/fitter/graph

15

Optimization in 2-D

« 2 equivalent representations

1000 -500 0 500 1000 1500 2000

6, 220 -20 8, 6o

Slide credit: Thilo, wikipedia 16

Optimization in 2-D

« Gradient Descent Wi”l =W'—-¢€d,, loss

Gradient is perpendicular to levels

W, -""":_',i.'.'.::':_;_;_ ‘

Slide credit: wikipedia 17

Gradient Descent

Slide from ¢s229

Figure shows a 2 dimensional loss function.
In DL Millions!
We just know the current value (blind)

18

Local vs. Global Minima

- If the loss is convex, gradient
descent converges to local minima if Lot S
step-size is small enough

« Linear regression is a convex
problem

« Deep Learning is by far not a o
convex problem. Still works in A
practice (one of the miracles of DL) T T r——

Image credit: Wikipedia, https://openreview.net/pdf?id=HkmaTz-0W 19

Details left out

Mini-batch stochastic gradient descent

— Sometimes we cannot use all of the data points = just use a random
subset

Overfitting problematic

— When the models get to complicated (many weights) models can learn
the particularities of the training data

Deep Learning is often used for classification problems
— Here we had regression with RSS
— Classification similar but different loss functions

20

Introduction to TF

Deep Learning frameworks

14

12

10

tritttddd

Percent of ML papers that mention...

theano
Eensorflow
keras
caffe
forch
pytorch
mxnet
chainer
ontk

&

Andrej Karpathy @
@karpathy

“TensorFlow

22

Two mayor library designs

We need gradients, of functions with 100 million+ weights.
Two design principles

« Static Computational Graph (build and run the graph in 2 steps)
— Theano
— TensorFlow

« Autograd
— Pytorch
— TensorFlow Eager

23

What is TensorFlow

« |t's APl about tensors, which flow in a computational graph

= N

)

Tensor https://www.tensorflow.org/

« What are tensors?

24

What is a tensor?

In this course we only need the simple and easy accessible definition of Ricci:

Definition. A tensor of type (p, q) is an assignment of a multidimensional array
i1...ip
T) 7 If]
to each basis f = (ey,...,e,,) of a fixed n-dimensional vector space such that, if we apply the change of basis

fsf.-R— (ezRi’J’uvt klddlng

then the multidimensional array obeys the transformation law

i .. g . _(p-1\i1 . (p-1 iy il - ip i1 pla
T, SR = (R (RO T3] RY - R

Jy++-Jg 1] ip

Sharpe, R. W. (1997). Differential Geometry: Cartan's Generalization of Klein's
Erlangen Program. Berlin, New York: Springer-Verlag. p. 194. ISBN 978-0-387-

94732-7.

25

What is a tensor?

For TensorFlow: A tensor is an array with several indices (like in numpy).

Order are number of indices and shape is the range.

In [1]:

In [2]:

Out[2]:

In [3]:

out[3]:

In [4]:

In [6]:

import numpy as np
Tl = np.asarray([1l,2,3)) #Tensor of order 1 aka Vector
T1
array([1l, 2, 3])
T2 = np.asarray([([1,2,3],(4,5,6])])) #Tensor of order 2 aka Matrix
T2
array([[1l, 2, 3],
(4, 5, 6]])

T3 = np.zeros((10,2,3)) #Tensor of order 3 (Volume like objects)

print (Tl.shape)
print (T2.shape)
print (T3.shape)

(3,)
(2, 3)
(10, 2, 3)

26

Computations in TensorFlow (and Theano)

e Computation is expressed as a dataflow graph

y Graph of Nodes, also called Operations or ops.
1ases

weights @ @

examples

labels

Computations in TensorFlow (and Theano)

e Edges are N-dimensional Arrays: Tensors

biases

weights @ @

examples

labels

Summary

The computation in TF is done via a computational graph

weights @

examples

labels

The nodes are ops
The edges are the flowing tensors

29

TensorFlow: Computation in 2 steps

Computations are done in 2 steps

— First: Build the graph
— Second: Execute the graph

Both steps can be done in many languages (python, C++, R)
— Best supported so far is python

Graph can be trained and ported on different devices
- TPU

- GPU

— Embedded System like mobile phones

Graph can be optimized

— XLA optimization

30

Building the graph (python) 10(3 3)(;]:120

In [1]: numpy

import numpy as np
ml = np.array([[3., 3.1])
m2 = np.array([[2.],[2.]])
10 * np.dot(ml,m2)

OQut[1l]:

array([[120.]])

Be the spider who knits a computational graph

10(3 3) ; ~120

Translate the following TF code in a
graph

wipes the graph

TensorFlow: Building the graph

import tensorflow as tf

We construct a graph (we wri
make first sure the defa
tf.reset_default_graph()
ml = tf.constant([[3., 3.]], name='M1")
m2 = tf.constant([[2.],[2.]], name='M2")
product = 10*tf.matmul(ml,m2)

to the default graph)
t graph is empty

Quite much happen in here!

32

Be the spider who knits the computational graph

Translate the following TF code in a Finish the computation graph
graph

TensorFlow: Building the graph

import tensorflow as tf

We construct a graph (we write to the default graph)
make first sure the default graph is empty
tf.reset_default_graph()

ml = tf.constant([[3., 3.]], name='M1")

m2 = tf.constant([[2.],[2.]], name='M2")

product = 10*tf.matmul(ml,m2)

TensorFlow: Executing the graph

In [4]:

sess = tf.Session()

res = sess.run(product) €
print(res)

sess.close()

[[120.]]

33

Building the graph (Numpy vs TensorFlow) 1o

In [1]: numpy

import numpy as np
ml = np.array([[3., 3.]])
m2 = np.array([[2.],[2.]])
10 * np.dot(ml,m2)

Out[l]:

array([[120.1]1])

TensorFlow: Building the graph

import tensorflow as tf

We construct a graph (we write to the default graph)

make first sure the default graph is empty

tf.reset_default_graph() mul
ml = tf.constant([[3., 3.]], name='M1") x‘,

m2 = tf.constant([[2.],[2.]], name='M2")

product = 10*tf.matmul(ml,m2)

m 4): lensorFlow: Executing the graph w1 oo MatMul
sess = tf.Session() M2

res = sess.run(product)

print(res)

sess.close()

([120.]]

=120

(NS I S

3 3)

mul/x ~

Operation:

Const

Attributes (2)

dtype {"type":"DT_FLOAT"}
value {"tensor":

{"dtype":"DT_FLOAT" 'tensor_
shape"{},'float_val":10}}

Inputs (0)
Outputs (0)

Remove from main graph

Session vs Graph

« A graph is the abstract definition of the calculation

« Asession is a concrete realization
— It places the ops on physical devices such as GPUs
— It initializes variables
— We can feed and fetch a session (see next slides)

sess = tf.Session ()
. #do stuff
sess.close () #Free the resources (TF eats all mem on GPU!)

Alternatively use the with construct

with tf.Session()as sess:
. #do stuff

#Free the resources when leaving the scope of with

35

Gradient Descent in TensorFlow

e TITn Theano and TensorFlow the Framework does
the calculation of the gradient for you
i elcln i)

JsVerul bk B o EhvEr Sde) jane@ialeleil 21 Xepatsy ol

loss has to be defined symbolically

eTaE by ool SHILL - el b ek biciasDagcEndOfe Ltz (108 00T L) aaebemnt iz all-oS &)
for e in range (epochs): #Fitting the data for some epochs
;L IEEESNE BEESE T ¢ ERE e O - Lo8E | S REEEel ClLGiEs (R8ek CRIEEL, w375 T Claita])

(D) A

Look at the source luke

Exercises at:

https://tensorchiefs.github.io/linear regression/

37

Excercises

38

Backup

Gradient flow in a computational graph: local junction

= activations

“local gradient”

Z

oL
0z

¢/
L,

@
@4
%
%
e
/]
%
/
% r r I
%
s a I e tS
T~ d
o 4
N %
~ /
N %
0 /
o L
o 4
N %
S ,,’
N
0 /
s, %
~ /
o "

is modified by local gradient

[llustration: http://cs231n.stanford.edu/slides/winter1516 lecture4.pdf

Example / tions

f(mvyaz):(.’ll—}—y)z
e.g.x=-2,y=5,z=_4 \

=>» Multiplication do a switch

oL
0z

gradients

Computations using feeding and fetching

f.constant([[1]], name='a')
f.placeholder(dtype='int32', shape=[1], name='b")
f.identity(a,name="'d")

f.multiply(a,b,name="'c")

f.multiply(d,c,name="e")

f.identity(c, name='f")

fetch

HOoOQQU®

t
t
t
€
i~
i

e f

-

feed

res = sess.run(f, feed dict={b:[2]})

1 ! i

fetch | Fetch _ symbolic values
(the numeric value) f (symbolic)

Feed and Fetch L]

Fetches can be a list of tensors @6’ i

feed

Feed (from TF docu)

— Afeed temporarily replaces the output of an operation with a tensor value.
You supply feed data as an argument to a run() call. The feed is only used for
the run call to which it is passed. The most common use case involves

designating specific operations to be “feed” operations by using tf.placeholder()
to create them.

res = sess.run(f, feed dict={b:data[:,0]})

A more general example
x = tf.placeholder(tf.float32, shape=(1024, 1024))

resl, res2 = sess.run([loss, loss2], feed dict={x:data[:,0], y:data[:,1]})
fetches fetches two inputs (feeds)

(the numeric values) (symbolic) 43

